Solve for x
x=2
x = -\frac{14}{9} = -1\frac{5}{9} \approx -1.555555556
Graph
Share
Copied to clipboard
\sqrt{x+2}=-4+2\sqrt{x+7}
Subtract -2\sqrt{x+7} from both sides of the equation.
\left(\sqrt{x+2}\right)^{2}=\left(-4+2\sqrt{x+7}\right)^{2}
Square both sides of the equation.
x+2=\left(-4+2\sqrt{x+7}\right)^{2}
Calculate \sqrt{x+2} to the power of 2 and get x+2.
x+2=16-16\sqrt{x+7}+4\left(\sqrt{x+7}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-4+2\sqrt{x+7}\right)^{2}.
x+2=16-16\sqrt{x+7}+4\left(x+7\right)
Calculate \sqrt{x+7} to the power of 2 and get x+7.
x+2=16-16\sqrt{x+7}+4x+28
Use the distributive property to multiply 4 by x+7.
x+2=44-16\sqrt{x+7}+4x
Add 16 and 28 to get 44.
x+2-\left(44+4x\right)=-16\sqrt{x+7}
Subtract 44+4x from both sides of the equation.
x+2-44-4x=-16\sqrt{x+7}
To find the opposite of 44+4x, find the opposite of each term.
x-42-4x=-16\sqrt{x+7}
Subtract 44 from 2 to get -42.
-3x-42=-16\sqrt{x+7}
Combine x and -4x to get -3x.
\left(-3x-42\right)^{2}=\left(-16\sqrt{x+7}\right)^{2}
Square both sides of the equation.
9x^{2}+252x+1764=\left(-16\sqrt{x+7}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-3x-42\right)^{2}.
9x^{2}+252x+1764=\left(-16\right)^{2}\left(\sqrt{x+7}\right)^{2}
Expand \left(-16\sqrt{x+7}\right)^{2}.
9x^{2}+252x+1764=256\left(\sqrt{x+7}\right)^{2}
Calculate -16 to the power of 2 and get 256.
9x^{2}+252x+1764=256\left(x+7\right)
Calculate \sqrt{x+7} to the power of 2 and get x+7.
9x^{2}+252x+1764=256x+1792
Use the distributive property to multiply 256 by x+7.
9x^{2}+252x+1764-256x=1792
Subtract 256x from both sides.
9x^{2}-4x+1764=1792
Combine 252x and -256x to get -4x.
9x^{2}-4x+1764-1792=0
Subtract 1792 from both sides.
9x^{2}-4x-28=0
Subtract 1792 from 1764 to get -28.
a+b=-4 ab=9\left(-28\right)=-252
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 9x^{2}+ax+bx-28. To find a and b, set up a system to be solved.
1,-252 2,-126 3,-84 4,-63 6,-42 7,-36 9,-28 12,-21 14,-18
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -252.
1-252=-251 2-126=-124 3-84=-81 4-63=-59 6-42=-36 7-36=-29 9-28=-19 12-21=-9 14-18=-4
Calculate the sum for each pair.
a=-18 b=14
The solution is the pair that gives sum -4.
\left(9x^{2}-18x\right)+\left(14x-28\right)
Rewrite 9x^{2}-4x-28 as \left(9x^{2}-18x\right)+\left(14x-28\right).
9x\left(x-2\right)+14\left(x-2\right)
Factor out 9x in the first and 14 in the second group.
\left(x-2\right)\left(9x+14\right)
Factor out common term x-2 by using distributive property.
x=2 x=-\frac{14}{9}
To find equation solutions, solve x-2=0 and 9x+14=0.
\sqrt{2+2}-2\sqrt{2+7}=-4
Substitute 2 for x in the equation \sqrt{x+2}-2\sqrt{x+7}=-4.
-4=-4
Simplify. The value x=2 satisfies the equation.
\sqrt{-\frac{14}{9}+2}-2\sqrt{-\frac{14}{9}+7}=-4
Substitute -\frac{14}{9} for x in the equation \sqrt{x+2}-2\sqrt{x+7}=-4.
-4=-4
Simplify. The value x=-\frac{14}{9} satisfies the equation.
x=2 x=-\frac{14}{9}
List all solutions of \sqrt{x+2}=2\sqrt{x+7}-4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}