Solve for x
x=7
Graph
Share
Copied to clipboard
\sqrt{x+2}=-1+\sqrt{3x-5}
Subtract -\sqrt{3x-5} from both sides of the equation.
\left(\sqrt{x+2}\right)^{2}=\left(-1+\sqrt{3x-5}\right)^{2}
Square both sides of the equation.
x+2=\left(-1+\sqrt{3x-5}\right)^{2}
Calculate \sqrt{x+2} to the power of 2 and get x+2.
x+2=1-2\sqrt{3x-5}+\left(\sqrt{3x-5}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-1+\sqrt{3x-5}\right)^{2}.
x+2=1-2\sqrt{3x-5}+3x-5
Calculate \sqrt{3x-5} to the power of 2 and get 3x-5.
x+2=-4-2\sqrt{3x-5}+3x
Subtract 5 from 1 to get -4.
x+2-\left(-4+3x\right)=-2\sqrt{3x-5}
Subtract -4+3x from both sides of the equation.
x+2+4-3x=-2\sqrt{3x-5}
To find the opposite of -4+3x, find the opposite of each term.
x+6-3x=-2\sqrt{3x-5}
Add 2 and 4 to get 6.
-2x+6=-2\sqrt{3x-5}
Combine x and -3x to get -2x.
\left(-2x+6\right)^{2}=\left(-2\sqrt{3x-5}\right)^{2}
Square both sides of the equation.
4x^{2}-24x+36=\left(-2\sqrt{3x-5}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-2x+6\right)^{2}.
4x^{2}-24x+36=\left(-2\right)^{2}\left(\sqrt{3x-5}\right)^{2}
Expand \left(-2\sqrt{3x-5}\right)^{2}.
4x^{2}-24x+36=4\left(\sqrt{3x-5}\right)^{2}
Calculate -2 to the power of 2 and get 4.
4x^{2}-24x+36=4\left(3x-5\right)
Calculate \sqrt{3x-5} to the power of 2 and get 3x-5.
4x^{2}-24x+36=12x-20
Use the distributive property to multiply 4 by 3x-5.
4x^{2}-24x+36-12x=-20
Subtract 12x from both sides.
4x^{2}-36x+36=-20
Combine -24x and -12x to get -36x.
4x^{2}-36x+36+20=0
Add 20 to both sides.
4x^{2}-36x+56=0
Add 36 and 20 to get 56.
x^{2}-9x+14=0
Divide both sides by 4.
a+b=-9 ab=1\times 14=14
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx+14. To find a and b, set up a system to be solved.
-1,-14 -2,-7
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 14.
-1-14=-15 -2-7=-9
Calculate the sum for each pair.
a=-7 b=-2
The solution is the pair that gives sum -9.
\left(x^{2}-7x\right)+\left(-2x+14\right)
Rewrite x^{2}-9x+14 as \left(x^{2}-7x\right)+\left(-2x+14\right).
x\left(x-7\right)-2\left(x-7\right)
Factor out x in the first and -2 in the second group.
\left(x-7\right)\left(x-2\right)
Factor out common term x-7 by using distributive property.
x=7 x=2
To find equation solutions, solve x-7=0 and x-2=0.
\sqrt{7+2}-\sqrt{3\times 7-5}=-1
Substitute 7 for x in the equation \sqrt{x+2}-\sqrt{3x-5}=-1.
-1=-1
Simplify. The value x=7 satisfies the equation.
\sqrt{2+2}-\sqrt{3\times 2-5}=-1
Substitute 2 for x in the equation \sqrt{x+2}-\sqrt{3x-5}=-1.
1=-1
Simplify. The value x=2 does not satisfy the equation because the left and the right hand side have opposite signs.
\sqrt{7+2}-\sqrt{3\times 7-5}=-1
Substitute 7 for x in the equation \sqrt{x+2}-\sqrt{3x-5}=-1.
-1=-1
Simplify. The value x=7 satisfies the equation.
x=7
Equation \sqrt{x+2}=\sqrt{3x-5}-1 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}