Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{x+2}\right)^{2}=\left(x+1\right)^{2}
Square both sides of the equation.
x+2=\left(x+1\right)^{2}
Calculate \sqrt{x+2} to the power of 2 and get x+2.
x+2=x^{2}+2x+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
x+2-x^{2}=2x+1
Subtract x^{2} from both sides.
x+2-x^{2}-2x=1
Subtract 2x from both sides.
-x+2-x^{2}=1
Combine x and -2x to get -x.
-x+2-x^{2}-1=0
Subtract 1 from both sides.
-x+1-x^{2}=0
Subtract 1 from 2 to get 1.
-x^{2}-x+1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -1 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+4}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-1\right)±\sqrt{5}}{2\left(-1\right)}
Add 1 to 4.
x=\frac{1±\sqrt{5}}{2\left(-1\right)}
The opposite of -1 is 1.
x=\frac{1±\sqrt{5}}{-2}
Multiply 2 times -1.
x=\frac{\sqrt{5}+1}{-2}
Now solve the equation x=\frac{1±\sqrt{5}}{-2} when ± is plus. Add 1 to \sqrt{5}.
x=\frac{-\sqrt{5}-1}{2}
Divide 1+\sqrt{5} by -2.
x=\frac{1-\sqrt{5}}{-2}
Now solve the equation x=\frac{1±\sqrt{5}}{-2} when ± is minus. Subtract \sqrt{5} from 1.
x=\frac{\sqrt{5}-1}{2}
Divide 1-\sqrt{5} by -2.
x=\frac{-\sqrt{5}-1}{2} x=\frac{\sqrt{5}-1}{2}
The equation is now solved.
\sqrt{\frac{-\sqrt{5}-1}{2}+2}=\frac{-\sqrt{5}-1}{2}+1
Substitute \frac{-\sqrt{5}-1}{2} for x in the equation \sqrt{x+2}=x+1.
-\left(\frac{1}{2}-\frac{1}{2}\times 5^{\frac{1}{2}}\right)=-\frac{1}{2}\times 5^{\frac{1}{2}}+\frac{1}{2}
Simplify. The value x=\frac{-\sqrt{5}-1}{2} does not satisfy the equation because the left and the right hand side have opposite signs.
\sqrt{\frac{\sqrt{5}-1}{2}+2}=\frac{\sqrt{5}-1}{2}+1
Substitute \frac{\sqrt{5}-1}{2} for x in the equation \sqrt{x+2}=x+1.
\frac{1}{2}+\frac{1}{2}\times 5^{\frac{1}{2}}=\frac{1}{2}\times 5^{\frac{1}{2}}+\frac{1}{2}
Simplify. The value x=\frac{\sqrt{5}-1}{2} satisfies the equation.
x=\frac{\sqrt{5}-1}{2}
Equation \sqrt{x+2}=x+1 has a unique solution.