Solve for x
x=2
Graph
Share
Copied to clipboard
\sqrt{x+2}=\sqrt{2x+5}-\sqrt{x-1}
Subtract \sqrt{x-1} from both sides of the equation.
\left(\sqrt{x+2}\right)^{2}=\left(\sqrt{2x+5}-\sqrt{x-1}\right)^{2}
Square both sides of the equation.
x+2=\left(\sqrt{2x+5}-\sqrt{x-1}\right)^{2}
Calculate \sqrt{x+2} to the power of 2 and get x+2.
x+2=\left(\sqrt{2x+5}\right)^{2}-2\sqrt{2x+5}\sqrt{x-1}+\left(\sqrt{x-1}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{2x+5}-\sqrt{x-1}\right)^{2}.
x+2=2x+5-2\sqrt{2x+5}\sqrt{x-1}+\left(\sqrt{x-1}\right)^{2}
Calculate \sqrt{2x+5} to the power of 2 and get 2x+5.
x+2=2x+5-2\sqrt{2x+5}\sqrt{x-1}+x-1
Calculate \sqrt{x-1} to the power of 2 and get x-1.
x+2=3x+5-2\sqrt{2x+5}\sqrt{x-1}-1
Combine 2x and x to get 3x.
x+2=3x+4-2\sqrt{2x+5}\sqrt{x-1}
Subtract 1 from 5 to get 4.
x+2-\left(3x+4\right)=-2\sqrt{2x+5}\sqrt{x-1}
Subtract 3x+4 from both sides of the equation.
x+2-3x-4=-2\sqrt{2x+5}\sqrt{x-1}
To find the opposite of 3x+4, find the opposite of each term.
-2x+2-4=-2\sqrt{2x+5}\sqrt{x-1}
Combine x and -3x to get -2x.
-2x-2=-2\sqrt{2x+5}\sqrt{x-1}
Subtract 4 from 2 to get -2.
\left(-2x-2\right)^{2}=\left(-2\sqrt{2x+5}\sqrt{x-1}\right)^{2}
Square both sides of the equation.
4x^{2}+8x+4=\left(-2\sqrt{2x+5}\sqrt{x-1}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-2x-2\right)^{2}.
4x^{2}+8x+4=\left(-2\right)^{2}\left(\sqrt{2x+5}\right)^{2}\left(\sqrt{x-1}\right)^{2}
Expand \left(-2\sqrt{2x+5}\sqrt{x-1}\right)^{2}.
4x^{2}+8x+4=4\left(\sqrt{2x+5}\right)^{2}\left(\sqrt{x-1}\right)^{2}
Calculate -2 to the power of 2 and get 4.
4x^{2}+8x+4=4\left(2x+5\right)\left(\sqrt{x-1}\right)^{2}
Calculate \sqrt{2x+5} to the power of 2 and get 2x+5.
4x^{2}+8x+4=4\left(2x+5\right)\left(x-1\right)
Calculate \sqrt{x-1} to the power of 2 and get x-1.
4x^{2}+8x+4=\left(8x+20\right)\left(x-1\right)
Use the distributive property to multiply 4 by 2x+5.
4x^{2}+8x+4=8x^{2}-8x+20x-20
Apply the distributive property by multiplying each term of 8x+20 by each term of x-1.
4x^{2}+8x+4=8x^{2}+12x-20
Combine -8x and 20x to get 12x.
4x^{2}+8x+4-8x^{2}=12x-20
Subtract 8x^{2} from both sides.
-4x^{2}+8x+4=12x-20
Combine 4x^{2} and -8x^{2} to get -4x^{2}.
-4x^{2}+8x+4-12x=-20
Subtract 12x from both sides.
-4x^{2}-4x+4=-20
Combine 8x and -12x to get -4x.
-4x^{2}-4x+4+20=0
Add 20 to both sides.
-4x^{2}-4x+24=0
Add 4 and 20 to get 24.
-x^{2}-x+6=0
Divide both sides by 4.
a+b=-1 ab=-6=-6
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx+6. To find a and b, set up a system to be solved.
1,-6 2,-3
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -6.
1-6=-5 2-3=-1
Calculate the sum for each pair.
a=2 b=-3
The solution is the pair that gives sum -1.
\left(-x^{2}+2x\right)+\left(-3x+6\right)
Rewrite -x^{2}-x+6 as \left(-x^{2}+2x\right)+\left(-3x+6\right).
x\left(-x+2\right)+3\left(-x+2\right)
Factor out x in the first and 3 in the second group.
\left(-x+2\right)\left(x+3\right)
Factor out common term -x+2 by using distributive property.
x=2 x=-3
To find equation solutions, solve -x+2=0 and x+3=0.
\sqrt{-3+2}+\sqrt{-3-1}=\sqrt{2\left(-3\right)+5}
Substitute -3 for x in the equation \sqrt{x+2}+\sqrt{x-1}=\sqrt{2x+5}. The expression \sqrt{-3+2} is undefined because the radicand cannot be negative.
\sqrt{2+2}+\sqrt{2-1}=\sqrt{2\times 2+5}
Substitute 2 for x in the equation \sqrt{x+2}+\sqrt{x-1}=\sqrt{2x+5}.
3=3
Simplify. The value x=2 satisfies the equation.
x=2
Equation \sqrt{x+2}=\sqrt{2x+5}-\sqrt{x-1} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}