Solve for x
x=24
Graph
Share
Copied to clipboard
\sqrt{x+12}=3+\sqrt{x-15}
Subtract -\sqrt{x-15} from both sides of the equation.
\left(\sqrt{x+12}\right)^{2}=\left(3+\sqrt{x-15}\right)^{2}
Square both sides of the equation.
x+12=\left(3+\sqrt{x-15}\right)^{2}
Calculate \sqrt{x+12} to the power of 2 and get x+12.
x+12=9+6\sqrt{x-15}+\left(\sqrt{x-15}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3+\sqrt{x-15}\right)^{2}.
x+12=9+6\sqrt{x-15}+x-15
Calculate \sqrt{x-15} to the power of 2 and get x-15.
x+12=-6+6\sqrt{x-15}+x
Subtract 15 from 9 to get -6.
x+12-6\sqrt{x-15}=-6+x
Subtract 6\sqrt{x-15} from both sides.
x+12-6\sqrt{x-15}-x=-6
Subtract x from both sides.
12-6\sqrt{x-15}=-6
Combine x and -x to get 0.
-6\sqrt{x-15}=-6-12
Subtract 12 from both sides.
-6\sqrt{x-15}=-18
Subtract 12 from -6 to get -18.
\sqrt{x-15}=\frac{-18}{-6}
Divide both sides by -6.
\sqrt{x-15}=3
Divide -18 by -6 to get 3.
x-15=9
Square both sides of the equation.
x-15-\left(-15\right)=9-\left(-15\right)
Add 15 to both sides of the equation.
x=9-\left(-15\right)
Subtracting -15 from itself leaves 0.
x=24
Subtract -15 from 9.
\sqrt{24+12}-\sqrt{24-15}=3
Substitute 24 for x in the equation \sqrt{x+12}-\sqrt{x-15}=3.
3=3
Simplify. The value x=24 satisfies the equation.
x=24
Equation \sqrt{x+12}=\sqrt{x-15}+3 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}