Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{x+1}\right)^{2}=\left(\sqrt{11x-8}-3\sqrt{x-2}\right)^{2}
Square both sides of the equation.
x+1=\left(\sqrt{11x-8}-3\sqrt{x-2}\right)^{2}
Calculate \sqrt{x+1} to the power of 2 and get x+1.
x+1-\left(\sqrt{11x-8}-3\sqrt{x-2}\right)^{2}=0
Subtract \left(\sqrt{11x-8}-3\sqrt{x-2}\right)^{2} from both sides.
x+1-\left(\left(\sqrt{11x-8}\right)^{2}-6\sqrt{11x-8}\sqrt{x-2}+9\left(\sqrt{x-2}\right)^{2}\right)=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{11x-8}-3\sqrt{x-2}\right)^{2}.
x+1-\left(11x-8-6\sqrt{11x-8}\sqrt{x-2}+9\left(\sqrt{x-2}\right)^{2}\right)=0
Calculate \sqrt{11x-8} to the power of 2 and get 11x-8.
x+1-\left(11x-8-6\sqrt{11x-8}\sqrt{x-2}+9\left(x-2\right)\right)=0
Calculate \sqrt{x-2} to the power of 2 and get x-2.
x+1-\left(11x-8-6\sqrt{11x-8}\sqrt{x-2}+9x-18\right)=0
Use the distributive property to multiply 9 by x-2.
x+1-\left(20x-8-6\sqrt{11x-8}\sqrt{x-2}-18\right)=0
Combine 11x and 9x to get 20x.
x+1-\left(20x-26-6\sqrt{11x-8}\sqrt{x-2}\right)=0
Subtract 18 from -8 to get -26.
x+1-20x+26+6\sqrt{11x-8}\sqrt{x-2}=0
To find the opposite of 20x-26-6\sqrt{11x-8}\sqrt{x-2}, find the opposite of each term.
-19x+1+26+6\sqrt{11x-8}\sqrt{x-2}=0
Combine x and -20x to get -19x.
-19x+27+6\sqrt{11x-8}\sqrt{x-2}=0
Add 1 and 26 to get 27.
-19x+6\sqrt{11x-8}\sqrt{x-2}=-27
Subtract 27 from both sides. Anything subtracted from zero gives its negation.
6\sqrt{11x-8}\sqrt{x-2}=-27+19x
Subtract -19x from both sides of the equation.
\left(6\sqrt{11x-8}\sqrt{x-2}\right)^{2}=\left(19x-27\right)^{2}
Square both sides of the equation.
6^{2}\left(\sqrt{11x-8}\right)^{2}\left(\sqrt{x-2}\right)^{2}=\left(19x-27\right)^{2}
Expand \left(6\sqrt{11x-8}\sqrt{x-2}\right)^{2}.
36\left(\sqrt{11x-8}\right)^{2}\left(\sqrt{x-2}\right)^{2}=\left(19x-27\right)^{2}
Calculate 6 to the power of 2 and get 36.
36\left(11x-8\right)\left(\sqrt{x-2}\right)^{2}=\left(19x-27\right)^{2}
Calculate \sqrt{11x-8} to the power of 2 and get 11x-8.
36\left(11x-8\right)\left(x-2\right)=\left(19x-27\right)^{2}
Calculate \sqrt{x-2} to the power of 2 and get x-2.
\left(396x-288\right)\left(x-2\right)=\left(19x-27\right)^{2}
Use the distributive property to multiply 36 by 11x-8.
396x^{2}-1080x+576=\left(19x-27\right)^{2}
Use the distributive property to multiply 396x-288 by x-2 and combine like terms.
396x^{2}-1080x+576=361x^{2}-1026x+729
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(19x-27\right)^{2}.
396x^{2}-1080x+576-361x^{2}=-1026x+729
Subtract 361x^{2} from both sides.
35x^{2}-1080x+576=-1026x+729
Combine 396x^{2} and -361x^{2} to get 35x^{2}.
35x^{2}-1080x+576+1026x=729
Add 1026x to both sides.
35x^{2}-54x+576=729
Combine -1080x and 1026x to get -54x.
35x^{2}-54x+576-729=0
Subtract 729 from both sides.
35x^{2}-54x-153=0
Subtract 729 from 576 to get -153.
a+b=-54 ab=35\left(-153\right)=-5355
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 35x^{2}+ax+bx-153. To find a and b, set up a system to be solved.
1,-5355 3,-1785 5,-1071 7,-765 9,-595 15,-357 17,-315 21,-255 35,-153 45,-119 51,-105 63,-85
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -5355.
1-5355=-5354 3-1785=-1782 5-1071=-1066 7-765=-758 9-595=-586 15-357=-342 17-315=-298 21-255=-234 35-153=-118 45-119=-74 51-105=-54 63-85=-22
Calculate the sum for each pair.
a=-105 b=51
The solution is the pair that gives sum -54.
\left(35x^{2}-105x\right)+\left(51x-153\right)
Rewrite 35x^{2}-54x-153 as \left(35x^{2}-105x\right)+\left(51x-153\right).
35x\left(x-3\right)+51\left(x-3\right)
Factor out 35x in the first and 51 in the second group.
\left(x-3\right)\left(35x+51\right)
Factor out common term x-3 by using distributive property.
x=3 x=-\frac{51}{35}
To find equation solutions, solve x-3=0 and 35x+51=0.
\sqrt{-\frac{51}{35}+1}=\sqrt{11\left(-\frac{51}{35}\right)-8}-3\sqrt{-\frac{51}{35}-2}
Substitute -\frac{51}{35} for x in the equation \sqrt{x+1}=\sqrt{11x-8}-3\sqrt{x-2}. The expression \sqrt{-\frac{51}{35}+1} is undefined because the radicand cannot be negative.
\sqrt{3+1}=\sqrt{11\times 3-8}-3\sqrt{3-2}
Substitute 3 for x in the equation \sqrt{x+1}=\sqrt{11x-8}-3\sqrt{x-2}.
2=2
Simplify. The value x=3 satisfies the equation.
x=3
Equation \sqrt{x+1}=\sqrt{11x-8}-3\sqrt{x-2} has a unique solution.