Solve for w
w=49
Share
Copied to clipboard
\sqrt{w-40}=10-\sqrt{w}
Subtract \sqrt{w} from both sides of the equation.
\left(\sqrt{w-40}\right)^{2}=\left(10-\sqrt{w}\right)^{2}
Square both sides of the equation.
w-40=\left(10-\sqrt{w}\right)^{2}
Calculate \sqrt{w-40} to the power of 2 and get w-40.
w-40=100-20\sqrt{w}+\left(\sqrt{w}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(10-\sqrt{w}\right)^{2}.
w-40=100-20\sqrt{w}+w
Calculate \sqrt{w} to the power of 2 and get w.
w-40+20\sqrt{w}=100+w
Add 20\sqrt{w} to both sides.
w-40+20\sqrt{w}-w=100
Subtract w from both sides.
-40+20\sqrt{w}=100
Combine w and -w to get 0.
20\sqrt{w}=100+40
Add 40 to both sides.
20\sqrt{w}=140
Add 100 and 40 to get 140.
\sqrt{w}=\frac{140}{20}
Divide both sides by 20.
\sqrt{w}=7
Divide 140 by 20 to get 7.
w=49
Square both sides of the equation.
\sqrt{49-40}+\sqrt{49}=10
Substitute 49 for w in the equation \sqrt{w-40}+\sqrt{w}=10.
10=10
Simplify. The value w=49 satisfies the equation.
w=49
Equation \sqrt{w-40}=-\sqrt{w}+10 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}