Skip to main content
Solve for w
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{w-40}=10-\sqrt{w}
Subtract \sqrt{w} from both sides of the equation.
\left(\sqrt{w-40}\right)^{2}=\left(10-\sqrt{w}\right)^{2}
Square both sides of the equation.
w-40=\left(10-\sqrt{w}\right)^{2}
Calculate \sqrt{w-40} to the power of 2 and get w-40.
w-40=100-20\sqrt{w}+\left(\sqrt{w}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(10-\sqrt{w}\right)^{2}.
w-40=100-20\sqrt{w}+w
Calculate \sqrt{w} to the power of 2 and get w.
w-40+20\sqrt{w}=100+w
Add 20\sqrt{w} to both sides.
w-40+20\sqrt{w}-w=100
Subtract w from both sides.
-40+20\sqrt{w}=100
Combine w and -w to get 0.
20\sqrt{w}=100+40
Add 40 to both sides.
20\sqrt{w}=140
Add 100 and 40 to get 140.
\sqrt{w}=\frac{140}{20}
Divide both sides by 20.
\sqrt{w}=7
Divide 140 by 20 to get 7.
w=49
Square both sides of the equation.
\sqrt{49-40}+\sqrt{49}=10
Substitute 49 for w in the equation \sqrt{w-40}+\sqrt{w}=10.
10=10
Simplify. The value w=49 satisfies the equation.
w=49
Equation \sqrt{w-40}=-\sqrt{w}+10 has a unique solution.