Solve for w
w=23
Share
Copied to clipboard
\sqrt{w+2}=5-\sqrt{w-23}
Subtract \sqrt{w-23} from both sides of the equation.
\left(\sqrt{w+2}\right)^{2}=\left(5-\sqrt{w-23}\right)^{2}
Square both sides of the equation.
w+2=\left(5-\sqrt{w-23}\right)^{2}
Calculate \sqrt{w+2} to the power of 2 and get w+2.
w+2=25-10\sqrt{w-23}+\left(\sqrt{w-23}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-\sqrt{w-23}\right)^{2}.
w+2=25-10\sqrt{w-23}+w-23
Calculate \sqrt{w-23} to the power of 2 and get w-23.
w+2=2-10\sqrt{w-23}+w
Subtract 23 from 25 to get 2.
w+2+10\sqrt{w-23}=2+w
Add 10\sqrt{w-23} to both sides.
w+2+10\sqrt{w-23}-w=2
Subtract w from both sides.
2+10\sqrt{w-23}=2
Combine w and -w to get 0.
10\sqrt{w-23}=2-2
Subtract 2 from both sides.
10\sqrt{w-23}=0
Subtract 2 from 2 to get 0.
\sqrt{w-23}=0
Divide both sides by 10. Zero divided by any non-zero number gives zero.
w-23=0
Square both sides of the equation.
w-23-\left(-23\right)=-\left(-23\right)
Add 23 to both sides of the equation.
w=-\left(-23\right)
Subtracting -23 from itself leaves 0.
w=23
Subtract -23 from 0.
\sqrt{23+2}+\sqrt{23-23}=5
Substitute 23 for w in the equation \sqrt{w+2}+\sqrt{w-23}=5.
5=5
Simplify. The value w=23 satisfies the equation.
w=23
Equation \sqrt{w+2}=-\sqrt{w-23}+5 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}