Skip to main content
Solve for w
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{w+2}=5-\sqrt{w-23}
Subtract \sqrt{w-23} from both sides of the equation.
\left(\sqrt{w+2}\right)^{2}=\left(5-\sqrt{w-23}\right)^{2}
Square both sides of the equation.
w+2=\left(5-\sqrt{w-23}\right)^{2}
Calculate \sqrt{w+2} to the power of 2 and get w+2.
w+2=25-10\sqrt{w-23}+\left(\sqrt{w-23}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-\sqrt{w-23}\right)^{2}.
w+2=25-10\sqrt{w-23}+w-23
Calculate \sqrt{w-23} to the power of 2 and get w-23.
w+2=2-10\sqrt{w-23}+w
Subtract 23 from 25 to get 2.
w+2+10\sqrt{w-23}=2+w
Add 10\sqrt{w-23} to both sides.
w+2+10\sqrt{w-23}-w=2
Subtract w from both sides.
2+10\sqrt{w-23}=2
Combine w and -w to get 0.
10\sqrt{w-23}=2-2
Subtract 2 from both sides.
10\sqrt{w-23}=0
Subtract 2 from 2 to get 0.
\sqrt{w-23}=0
Divide both sides by 10. Zero divided by any non-zero number gives zero.
w-23=0
Square both sides of the equation.
w-23-\left(-23\right)=-\left(-23\right)
Add 23 to both sides of the equation.
w=-\left(-23\right)
Subtracting -23 from itself leaves 0.
w=23
Subtract -23 from 0.
\sqrt{23+2}+\sqrt{23-23}=5
Substitute 23 for w in the equation \sqrt{w+2}+\sqrt{w-23}=5.
5=5
Simplify. The value w=23 satisfies the equation.
w=23
Equation \sqrt{w+2}=-\sqrt{w-23}+5 has a unique solution.