Solve for v (complex solution)
v=\frac{y+\sqrt{u}}{2}
Solve for u
u=\left(y-2v\right)^{2}
-\left(y-2v\right)\geq 0
Solve for v
v=\frac{y+\sqrt{u}}{2}
u\geq 0
Solve for u (complex solution)
u=\left(y-2v\right)^{2}
y=2v\text{ or }arg(y-2v)\geq \pi
Graph
Share
Copied to clipboard
2v=\sqrt{u}+y
Swap sides so that all variable terms are on the left hand side.
2v=y+\sqrt{u}
The equation is in standard form.
\frac{2v}{2}=\frac{y+\sqrt{u}}{2}
Divide both sides by 2.
v=\frac{y+\sqrt{u}}{2}
Dividing by 2 undoes the multiplication by 2.
\sqrt{u}+y-y=2v-y
Subtract y from both sides of the equation.
\sqrt{u}=2v-y
Subtracting y from itself leaves 0.
u=\left(2v-y\right)^{2}
Square both sides of the equation.
2v=\sqrt{u}+y
Swap sides so that all variable terms are on the left hand side.
2v=y+\sqrt{u}
The equation is in standard form.
\frac{2v}{2}=\frac{y+\sqrt{u}}{2}
Divide both sides by 2.
v=\frac{y+\sqrt{u}}{2}
Dividing by 2 undoes the multiplication by 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}