Solve for u
u=2
Share
Copied to clipboard
\sqrt{u^{2}+21}=u+1+2
Subtract -2 from both sides of the equation.
\sqrt{u^{2}+21}=u+3
Add 1 and 2 to get 3.
\left(\sqrt{u^{2}+21}\right)^{2}=\left(u+3\right)^{2}
Square both sides of the equation.
u^{2}+21=\left(u+3\right)^{2}
Calculate \sqrt{u^{2}+21} to the power of 2 and get u^{2}+21.
u^{2}+21=u^{2}+6u+9
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(u+3\right)^{2}.
u^{2}+21-u^{2}=6u+9
Subtract u^{2} from both sides.
21=6u+9
Combine u^{2} and -u^{2} to get 0.
6u+9=21
Swap sides so that all variable terms are on the left hand side.
6u=21-9
Subtract 9 from both sides.
6u=12
Subtract 9 from 21 to get 12.
u=\frac{12}{6}
Divide both sides by 6.
u=2
Divide 12 by 6 to get 2.
\sqrt{2^{2}+21}-2=2+1
Substitute 2 for u in the equation \sqrt{u^{2}+21}-2=u+1.
3=3
Simplify. The value u=2 satisfies the equation.
u=2
Equation \sqrt{u^{2}+21}=u+3 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}