Solve for t
t=9
Share
Copied to clipboard
\left(\sqrt{t}\right)^{2}-6\sqrt{t}=-9
Use the distributive property to multiply \sqrt{t} by \sqrt{t}-6.
t-6\sqrt{t}=-9
Calculate \sqrt{t} to the power of 2 and get t.
-6\sqrt{t}=-9-t
Subtract t from both sides of the equation.
\left(-6\sqrt{t}\right)^{2}=\left(-9-t\right)^{2}
Square both sides of the equation.
\left(-6\right)^{2}\left(\sqrt{t}\right)^{2}=\left(-9-t\right)^{2}
Expand \left(-6\sqrt{t}\right)^{2}.
36\left(\sqrt{t}\right)^{2}=\left(-9-t\right)^{2}
Calculate -6 to the power of 2 and get 36.
36t=\left(-9-t\right)^{2}
Calculate \sqrt{t} to the power of 2 and get t.
36t=81+18t+t^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-9-t\right)^{2}.
36t-18t=81+t^{2}
Subtract 18t from both sides.
18t=81+t^{2}
Combine 36t and -18t to get 18t.
18t-t^{2}=81
Subtract t^{2} from both sides.
18t-t^{2}-81=0
Subtract 81 from both sides.
-t^{2}+18t-81=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=18 ab=-\left(-81\right)=81
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -t^{2}+at+bt-81. To find a and b, set up a system to be solved.
1,81 3,27 9,9
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 81.
1+81=82 3+27=30 9+9=18
Calculate the sum for each pair.
a=9 b=9
The solution is the pair that gives sum 18.
\left(-t^{2}+9t\right)+\left(9t-81\right)
Rewrite -t^{2}+18t-81 as \left(-t^{2}+9t\right)+\left(9t-81\right).
-t\left(t-9\right)+9\left(t-9\right)
Factor out -t in the first and 9 in the second group.
\left(t-9\right)\left(-t+9\right)
Factor out common term t-9 by using distributive property.
t=9 t=9
To find equation solutions, solve t-9=0 and -t+9=0.
\sqrt{9}\left(\sqrt{9}-6\right)=-9
Substitute 9 for t in the equation \sqrt{t}\left(\sqrt{t}-6\right)=-9.
-9=-9
Simplify. The value t=9 satisfies the equation.
\sqrt{9}\left(\sqrt{9}-6\right)=-9
Substitute 9 for t in the equation \sqrt{t}\left(\sqrt{t}-6\right)=-9.
-9=-9
Simplify. The value t=9 satisfies the equation.
t=9 t=9
List all solutions of -6\sqrt{t}=-t-9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}