Solve for k
k=\sqrt{s}-1
s\geq 0
Solve for s
s=\left(k+1\right)^{2}
k+1\geq 0
Share
Copied to clipboard
-k=1-\sqrt{s}
Subtract \sqrt{s} from both sides.
-k=-\sqrt{s}+1
The equation is in standard form.
\frac{-k}{-1}=\frac{-\sqrt{s}+1}{-1}
Divide both sides by -1.
k=\frac{-\sqrt{s}+1}{-1}
Dividing by -1 undoes the multiplication by -1.
k=\sqrt{s}-1
Divide 1-\sqrt{s} by -1.
\sqrt{s}-k-\left(-k\right)=1-\left(-k\right)
Subtract -k from both sides of the equation.
\sqrt{s}=1-\left(-k\right)
Subtracting -k from itself leaves 0.
\sqrt{s}=k+1
Subtract -k from 1.
s=\left(k+1\right)^{2}
Square both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}