Skip to main content
Solve for m
Tick mark Image
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{m+n}\right)^{2}=\left(\sqrt{m}+\sqrt{n}\right)^{2}
Square both sides of the equation.
m+n=\left(\sqrt{m}+\sqrt{n}\right)^{2}
Calculate \sqrt{m+n} to the power of 2 and get m+n.
m+n=\left(\sqrt{m}\right)^{2}+2\sqrt{m}\sqrt{n}+\left(\sqrt{n}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{m}+\sqrt{n}\right)^{2}.
m+n=m+2\sqrt{m}\sqrt{n}+\left(\sqrt{n}\right)^{2}
Calculate \sqrt{m} to the power of 2 and get m.
m+n=m+2\sqrt{m}\sqrt{n}+n
Calculate \sqrt{n} to the power of 2 and get n.
m+n-m=2\sqrt{m}\sqrt{n}+n
Subtract m from both sides.
n=2\sqrt{m}\sqrt{n}+n
Combine m and -m to get 0.
2\sqrt{m}\sqrt{n}+n=n
Swap sides so that all variable terms are on the left hand side.
2\sqrt{m}\sqrt{n}=n-n
Subtract n from both sides.
2\sqrt{m}\sqrt{n}=0
Combine n and -n to get 0.
\frac{2\sqrt{n}\sqrt{m}}{2\sqrt{n}}=\frac{0}{2\sqrt{n}}
Divide both sides by 2\sqrt{n}.
\sqrt{m}=\frac{0}{2\sqrt{n}}
Dividing by 2\sqrt{n} undoes the multiplication by 2\sqrt{n}.
\sqrt{m}=0
Divide 0 by 2\sqrt{n}.
m=0
Square both sides of the equation.
\sqrt{0+n}=\sqrt{0}+\sqrt{n}
Substitute 0 for m in the equation \sqrt{m+n}=\sqrt{m}+\sqrt{n}.
n^{\frac{1}{2}}=n^{\frac{1}{2}}
Simplify. The value m=0 satisfies the equation.
m=0
Equation \sqrt{m+n}=\sqrt{m}+\sqrt{n} has a unique solution.
\left(\sqrt{m+n}\right)^{2}=\left(\sqrt{m}+\sqrt{n}\right)^{2}
Square both sides of the equation.
m+n=\left(\sqrt{m}+\sqrt{n}\right)^{2}
Calculate \sqrt{m+n} to the power of 2 and get m+n.
m+n=\left(\sqrt{m}\right)^{2}+2\sqrt{m}\sqrt{n}+\left(\sqrt{n}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{m}+\sqrt{n}\right)^{2}.
m+n=m+2\sqrt{m}\sqrt{n}+\left(\sqrt{n}\right)^{2}
Calculate \sqrt{m} to the power of 2 and get m.
m+n=m+2\sqrt{m}\sqrt{n}+n
Calculate \sqrt{n} to the power of 2 and get n.
m+n-2\sqrt{m}\sqrt{n}=m+n
Subtract 2\sqrt{m}\sqrt{n} from both sides.
m+n-2\sqrt{m}\sqrt{n}-n=m
Subtract n from both sides.
m-2\sqrt{m}\sqrt{n}=m
Combine n and -n to get 0.
-2\sqrt{m}\sqrt{n}=m-m
Subtract m from both sides.
-2\sqrt{m}\sqrt{n}=0
Combine m and -m to get 0.
\frac{\left(-2\sqrt{m}\right)\sqrt{n}}{-2\sqrt{m}}=\frac{0}{-2\sqrt{m}}
Divide both sides by -2\sqrt{m}.
\sqrt{n}=\frac{0}{-2\sqrt{m}}
Dividing by -2\sqrt{m} undoes the multiplication by -2\sqrt{m}.
\sqrt{n}=0
Divide 0 by -2\sqrt{m}.
n=0
Square both sides of the equation.
\sqrt{m+0}=\sqrt{m}+\sqrt{0}
Substitute 0 for n in the equation \sqrt{m+n}=\sqrt{m}+\sqrt{n}.
m^{\frac{1}{2}}=m^{\frac{1}{2}}
Simplify. The value n=0 satisfies the equation.
n=0
Equation \sqrt{m+n}=\sqrt{m}+\sqrt{n} has a unique solution.