Solve for a
a = \frac{2191}{108} = 20\frac{31}{108} \approx 20.287037037
Share
Copied to clipboard
\sqrt{a+\sqrt{3}}=9-\sqrt{a-\sqrt{3}}
Subtract \sqrt{a-\sqrt{3}} from both sides of the equation.
\left(\sqrt{a+\sqrt{3}}\right)^{2}=\left(9-\sqrt{a-\sqrt{3}}\right)^{2}
Square both sides of the equation.
a+\sqrt{3}=\left(9-\sqrt{a-\sqrt{3}}\right)^{2}
Calculate \sqrt{a+\sqrt{3}} to the power of 2 and get a+\sqrt{3}.
a+\sqrt{3}=81-18\sqrt{a-\sqrt{3}}+\left(\sqrt{a-\sqrt{3}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(9-\sqrt{a-\sqrt{3}}\right)^{2}.
a+\sqrt{3}=81-18\sqrt{a-\sqrt{3}}+a-\sqrt{3}
Calculate \sqrt{a-\sqrt{3}} to the power of 2 and get a-\sqrt{3}.
a+\sqrt{3}+18\sqrt{a-\sqrt{3}}=81+a-\sqrt{3}
Add 18\sqrt{a-\sqrt{3}} to both sides.
a+\sqrt{3}+18\sqrt{a-\sqrt{3}}-a=81-\sqrt{3}
Subtract a from both sides.
\sqrt{3}+18\sqrt{a-\sqrt{3}}=81-\sqrt{3}
Combine a and -a to get 0.
18\sqrt{a-\sqrt{3}}=81-\sqrt{3}-\sqrt{3}
Subtract \sqrt{3} from both sides.
18\sqrt{a-\sqrt{3}}=81-2\sqrt{3}
Combine -\sqrt{3} and -\sqrt{3} to get -2\sqrt{3}.
\frac{18\sqrt{a-\sqrt{3}}}{18}=\frac{81-2\sqrt{3}}{18}
Divide both sides by 18.
\sqrt{a-\sqrt{3}}=\frac{81-2\sqrt{3}}{18}
Dividing by 18 undoes the multiplication by 18.
\sqrt{a-\sqrt{3}}=-\frac{\sqrt{3}}{9}+\frac{9}{2}
Divide 81-2\sqrt{3} by 18.
a-\sqrt{3}=\frac{2191}{108}-\sqrt{3}
Square both sides of the equation.
a-\sqrt{3}-\left(-\sqrt{3}\right)=\frac{2191}{108}-\sqrt{3}-\left(-\sqrt{3}\right)
Subtract -\sqrt{3} from both sides of the equation.
a=\frac{2191}{108}-\sqrt{3}-\left(-\sqrt{3}\right)
Subtracting -\sqrt{3} from itself leaves 0.
a=\frac{2191}{108}
Subtract -\sqrt{3} from \frac{2191}{108}-\sqrt{3}.
\sqrt{\frac{2191}{108}+\sqrt{3}}+\sqrt{\frac{2191}{108}-\sqrt{3}}=9
Substitute \frac{2191}{108} for a in the equation \sqrt{a+\sqrt{3}}+\sqrt{a-\sqrt{3}}=9.
9=9
Simplify. The value a=\frac{2191}{108} satisfies the equation.
a=\frac{2191}{108}
Equation \sqrt{a+\sqrt{3}}=-\sqrt{a-\sqrt{3}}+9 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}