Solve for X
X=9
Share
Copied to clipboard
\left(\sqrt{X}\right)^{2}=\left(\sqrt{X-5}+1\right)^{2}
Square both sides of the equation.
X=\left(\sqrt{X-5}+1\right)^{2}
Calculate \sqrt{X} to the power of 2 and get X.
X=\left(\sqrt{X-5}\right)^{2}+2\sqrt{X-5}+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{X-5}+1\right)^{2}.
X=X-5+2\sqrt{X-5}+1
Calculate \sqrt{X-5} to the power of 2 and get X-5.
X=X-4+2\sqrt{X-5}
Add -5 and 1 to get -4.
X-X=-4+2\sqrt{X-5}
Subtract X from both sides.
0=-4+2\sqrt{X-5}
Combine X and -X to get 0.
-4+2\sqrt{X-5}=0
Swap sides so that all variable terms are on the left hand side.
2\sqrt{X-5}=4
Add 4 to both sides. Anything plus zero gives itself.
\sqrt{X-5}=\frac{4}{2}
Divide both sides by 2.
\sqrt{X-5}=2
Divide 4 by 2 to get 2.
X-5=4
Square both sides of the equation.
X-5-\left(-5\right)=4-\left(-5\right)
Add 5 to both sides of the equation.
X=4-\left(-5\right)
Subtracting -5 from itself leaves 0.
X=9
Subtract -5 from 4.
\sqrt{9}=\sqrt{9-5}+1
Substitute 9 for X in the equation \sqrt{X}=\sqrt{X-5}+1.
3=3
Simplify. The value X=9 satisfies the equation.
X=9
Equation \sqrt{X}=\sqrt{X-5}+1 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}