Solve for x
x=3
Graph
Share
Copied to clipboard
\left(\sqrt{9x-2}\right)^{2}=\left(\sqrt{4x-3}+\sqrt{x+1}\right)^{2}
Square both sides of the equation.
9x-2=\left(\sqrt{4x-3}+\sqrt{x+1}\right)^{2}
Calculate \sqrt{9x-2} to the power of 2 and get 9x-2.
9x-2=\left(\sqrt{4x-3}\right)^{2}+2\sqrt{4x-3}\sqrt{x+1}+\left(\sqrt{x+1}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{4x-3}+\sqrt{x+1}\right)^{2}.
9x-2=4x-3+2\sqrt{4x-3}\sqrt{x+1}+\left(\sqrt{x+1}\right)^{2}
Calculate \sqrt{4x-3} to the power of 2 and get 4x-3.
9x-2=4x-3+2\sqrt{4x-3}\sqrt{x+1}+x+1
Calculate \sqrt{x+1} to the power of 2 and get x+1.
9x-2=5x-3+2\sqrt{4x-3}\sqrt{x+1}+1
Combine 4x and x to get 5x.
9x-2=5x-2+2\sqrt{4x-3}\sqrt{x+1}
Add -3 and 1 to get -2.
9x-2-\left(5x-2\right)=2\sqrt{4x-3}\sqrt{x+1}
Subtract 5x-2 from both sides of the equation.
9x-2-5x+2=2\sqrt{4x-3}\sqrt{x+1}
To find the opposite of 5x-2, find the opposite of each term.
4x-2+2=2\sqrt{4x-3}\sqrt{x+1}
Combine 9x and -5x to get 4x.
4x=2\sqrt{4x-3}\sqrt{x+1}
Add -2 and 2 to get 0.
\left(4x\right)^{2}=\left(2\sqrt{4x-3}\sqrt{x+1}\right)^{2}
Square both sides of the equation.
4^{2}x^{2}=\left(2\sqrt{4x-3}\sqrt{x+1}\right)^{2}
Expand \left(4x\right)^{2}.
16x^{2}=\left(2\sqrt{4x-3}\sqrt{x+1}\right)^{2}
Calculate 4 to the power of 2 and get 16.
16x^{2}=2^{2}\left(\sqrt{4x-3}\right)^{2}\left(\sqrt{x+1}\right)^{2}
Expand \left(2\sqrt{4x-3}\sqrt{x+1}\right)^{2}.
16x^{2}=4\left(\sqrt{4x-3}\right)^{2}\left(\sqrt{x+1}\right)^{2}
Calculate 2 to the power of 2 and get 4.
16x^{2}=4\left(4x-3\right)\left(\sqrt{x+1}\right)^{2}
Calculate \sqrt{4x-3} to the power of 2 and get 4x-3.
16x^{2}=4\left(4x-3\right)\left(x+1\right)
Calculate \sqrt{x+1} to the power of 2 and get x+1.
16x^{2}=\left(16x-12\right)\left(x+1\right)
Use the distributive property to multiply 4 by 4x-3.
16x^{2}=16x^{2}+16x-12x-12
Apply the distributive property by multiplying each term of 16x-12 by each term of x+1.
16x^{2}=16x^{2}+4x-12
Combine 16x and -12x to get 4x.
16x^{2}-16x^{2}=4x-12
Subtract 16x^{2} from both sides.
0=4x-12
Combine 16x^{2} and -16x^{2} to get 0.
4x-12=0
Swap sides so that all variable terms are on the left hand side.
4x=12
Add 12 to both sides. Anything plus zero gives itself.
x=\frac{12}{4}
Divide both sides by 4.
x=3
Divide 12 by 4 to get 3.
\sqrt{9\times 3-2}=\sqrt{4\times 3-3}+\sqrt{3+1}
Substitute 3 for x in the equation \sqrt{9x-2}=\sqrt{4x-3}+\sqrt{x+1}.
5=5
Simplify. The value x=3 satisfies the equation.
x=3
Equation \sqrt{9x-2}=\sqrt{x+1}+\sqrt{4x-3} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}