\sqrt { 9 } - \sqrt[ 3 ] { - 8 } - ( 3 \sqrt { 2 } - 51 - 2 ( \frac { 1 } { \sqrt { 2 } } + \sqrt { 2 } ) =
Evaluate
56
Factor
2^{3}\times 7
Share
Copied to clipboard
3-\sqrt[3]{-8}-\left(3\sqrt{2}-51-2\left(\frac{1}{\sqrt{2}}+\sqrt{2}\right)\right)
Calculate the square root of 9 and get 3.
3-\left(-2\right)-\left(3\sqrt{2}-51-2\left(\frac{1}{\sqrt{2}}+\sqrt{2}\right)\right)
Calculate \sqrt[3]{-8} and get -2.
3+2-\left(3\sqrt{2}-51-2\left(\frac{1}{\sqrt{2}}+\sqrt{2}\right)\right)
The opposite of -2 is 2.
5-\left(3\sqrt{2}-51-2\left(\frac{1}{\sqrt{2}}+\sqrt{2}\right)\right)
Add 3 and 2 to get 5.
5-\left(3\sqrt{2}-51-2\left(\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}+\sqrt{2}\right)\right)
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
5-\left(3\sqrt{2}-51-2\left(\frac{\sqrt{2}}{2}+\sqrt{2}\right)\right)
The square of \sqrt{2} is 2.
5-\left(3\sqrt{2}-51-2\times \frac{3}{2}\sqrt{2}\right)
Combine \frac{\sqrt{2}}{2} and \sqrt{2} to get \frac{3}{2}\sqrt{2}.
5-\left(3\sqrt{2}-51-3\sqrt{2}\right)
Multiply 2 and \frac{3}{2} to get 3.
5-\left(-51\right)
Combine 3\sqrt{2} and -3\sqrt{2} to get 0.
5+51
The opposite of -51 is 51.
56
Add 5 and 51 to get 56.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}