Solve for x
x=9
Graph
Share
Copied to clipboard
\sqrt{8x^{2}+81}=3x
Subtract -3x from both sides of the equation.
\left(\sqrt{8x^{2}+81}\right)^{2}=\left(3x\right)^{2}
Square both sides of the equation.
8x^{2}+81=\left(3x\right)^{2}
Calculate \sqrt{8x^{2}+81} to the power of 2 and get 8x^{2}+81.
8x^{2}+81=3^{2}x^{2}
Expand \left(3x\right)^{2}.
8x^{2}+81=9x^{2}
Calculate 3 to the power of 2 and get 9.
8x^{2}+81-9x^{2}=0
Subtract 9x^{2} from both sides.
-x^{2}+81=0
Combine 8x^{2} and -9x^{2} to get -x^{2}.
-x^{2}=-81
Subtract 81 from both sides. Anything subtracted from zero gives its negation.
x^{2}=\frac{-81}{-1}
Divide both sides by -1.
x^{2}=81
Fraction \frac{-81}{-1} can be simplified to 81 by removing the negative sign from both the numerator and the denominator.
x=9 x=-9
Take the square root of both sides of the equation.
\sqrt{8\times 9^{2}+81}-3\times 9=0
Substitute 9 for x in the equation \sqrt{8x^{2}+81}-3x=0.
0=0
Simplify. The value x=9 satisfies the equation.
\sqrt{8\left(-9\right)^{2}+81}-3\left(-9\right)=0
Substitute -9 for x in the equation \sqrt{8x^{2}+81}-3x=0.
54=0
Simplify. The value x=-9 does not satisfy the equation.
x=9
Equation \sqrt{8x^{2}+81}=3x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}