Evaluate
2\sqrt{2}+\frac{4}{3}\approx 4.161760458
Factor
\frac{2 \sqrt{2} {(\sqrt{2} + 3)}}{3} = 4.161760458079524
Share
Copied to clipboard
2\sqrt{2}-\frac{4}{12}+\sqrt{\left(-2\right)^{2}}-\frac{1}{3}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
2\sqrt{2}-\frac{1}{3}+\sqrt{\left(-2\right)^{2}}-\frac{1}{3}
Reduce the fraction \frac{4}{12} to lowest terms by extracting and canceling out 4.
2\sqrt{2}-\frac{1}{3}+\sqrt{4}-\frac{1}{3}
Calculate -2 to the power of 2 and get 4.
2\sqrt{2}-\frac{1}{3}+2-\frac{1}{3}
Calculate the square root of 4 and get 2.
2\sqrt{2}-\frac{1}{3}+\frac{6}{3}-\frac{1}{3}
Convert 2 to fraction \frac{6}{3}.
2\sqrt{2}+\frac{-1+6}{3}-\frac{1}{3}
Since -\frac{1}{3} and \frac{6}{3} have the same denominator, add them by adding their numerators.
2\sqrt{2}+\frac{5}{3}-\frac{1}{3}
Add -1 and 6 to get 5.
2\sqrt{2}+\frac{5-1}{3}
Since \frac{5}{3} and \frac{1}{3} have the same denominator, subtract them by subtracting their numerators.
2\sqrt{2}+\frac{4}{3}
Subtract 1 from 5 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}