Evaluate
\frac{19\sqrt{2}}{4}-\frac{2\sqrt{22}}{7}\approx 5.377395633
Factor
\frac{133 \sqrt{2} - 8 \sqrt{22}}{28} = 5.377395632751222
Share
Copied to clipboard
6\sqrt{2}-4\sqrt{\frac{1}{2}}-\frac{1}{7}\sqrt{88}+\sqrt{\frac{1\times 8+1}{8}}
Factor 72=6^{2}\times 2. Rewrite the square root of the product \sqrt{6^{2}\times 2} as the product of square roots \sqrt{6^{2}}\sqrt{2}. Take the square root of 6^{2}.
6\sqrt{2}-4\times \frac{\sqrt{1}}{\sqrt{2}}-\frac{1}{7}\sqrt{88}+\sqrt{\frac{1\times 8+1}{8}}
Rewrite the square root of the division \sqrt{\frac{1}{2}} as the division of square roots \frac{\sqrt{1}}{\sqrt{2}}.
6\sqrt{2}-4\times \frac{1}{\sqrt{2}}-\frac{1}{7}\sqrt{88}+\sqrt{\frac{1\times 8+1}{8}}
Calculate the square root of 1 and get 1.
6\sqrt{2}-4\times \frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}-\frac{1}{7}\sqrt{88}+\sqrt{\frac{1\times 8+1}{8}}
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
6\sqrt{2}-4\times \frac{\sqrt{2}}{2}-\frac{1}{7}\sqrt{88}+\sqrt{\frac{1\times 8+1}{8}}
The square of \sqrt{2} is 2.
6\sqrt{2}-2\sqrt{2}-\frac{1}{7}\sqrt{88}+\sqrt{\frac{1\times 8+1}{8}}
Cancel out 2, the greatest common factor in 4 and 2.
4\sqrt{2}-\frac{1}{7}\sqrt{88}+\sqrt{\frac{1\times 8+1}{8}}
Combine 6\sqrt{2} and -2\sqrt{2} to get 4\sqrt{2}.
4\sqrt{2}-\frac{1}{7}\times 2\sqrt{22}+\sqrt{\frac{1\times 8+1}{8}}
Factor 88=2^{2}\times 22. Rewrite the square root of the product \sqrt{2^{2}\times 22} as the product of square roots \sqrt{2^{2}}\sqrt{22}. Take the square root of 2^{2}.
4\sqrt{2}+\frac{-2}{7}\sqrt{22}+\sqrt{\frac{1\times 8+1}{8}}
Express -\frac{1}{7}\times 2 as a single fraction.
4\sqrt{2}-\frac{2}{7}\sqrt{22}+\sqrt{\frac{1\times 8+1}{8}}
Fraction \frac{-2}{7} can be rewritten as -\frac{2}{7} by extracting the negative sign.
4\sqrt{2}-\frac{2}{7}\sqrt{22}+\sqrt{\frac{8+1}{8}}
Multiply 1 and 8 to get 8.
4\sqrt{2}-\frac{2}{7}\sqrt{22}+\sqrt{\frac{9}{8}}
Add 8 and 1 to get 9.
4\sqrt{2}-\frac{2}{7}\sqrt{22}+\frac{\sqrt{9}}{\sqrt{8}}
Rewrite the square root of the division \sqrt{\frac{9}{8}} as the division of square roots \frac{\sqrt{9}}{\sqrt{8}}.
4\sqrt{2}-\frac{2}{7}\sqrt{22}+\frac{3}{\sqrt{8}}
Calculate the square root of 9 and get 3.
4\sqrt{2}-\frac{2}{7}\sqrt{22}+\frac{3}{2\sqrt{2}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
4\sqrt{2}-\frac{2}{7}\sqrt{22}+\frac{3\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{3}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
4\sqrt{2}-\frac{2}{7}\sqrt{22}+\frac{3\sqrt{2}}{2\times 2}
The square of \sqrt{2} is 2.
4\sqrt{2}-\frac{2}{7}\sqrt{22}+\frac{3\sqrt{2}}{4}
Multiply 2 and 2 to get 4.
\frac{19}{4}\sqrt{2}-\frac{2}{7}\sqrt{22}
Combine 4\sqrt{2} and \frac{3\sqrt{2}}{4} to get \frac{19}{4}\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}