Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

6\sqrt{2}-4\sqrt{\frac{1}{2}}-\frac{1}{7}\sqrt{88}+\sqrt{\frac{1\times 8+1}{8}}
Factor 72=6^{2}\times 2. Rewrite the square root of the product \sqrt{6^{2}\times 2} as the product of square roots \sqrt{6^{2}}\sqrt{2}. Take the square root of 6^{2}.
6\sqrt{2}-4\times \frac{\sqrt{1}}{\sqrt{2}}-\frac{1}{7}\sqrt{88}+\sqrt{\frac{1\times 8+1}{8}}
Rewrite the square root of the division \sqrt{\frac{1}{2}} as the division of square roots \frac{\sqrt{1}}{\sqrt{2}}.
6\sqrt{2}-4\times \frac{1}{\sqrt{2}}-\frac{1}{7}\sqrt{88}+\sqrt{\frac{1\times 8+1}{8}}
Calculate the square root of 1 and get 1.
6\sqrt{2}-4\times \frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}-\frac{1}{7}\sqrt{88}+\sqrt{\frac{1\times 8+1}{8}}
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
6\sqrt{2}-4\times \frac{\sqrt{2}}{2}-\frac{1}{7}\sqrt{88}+\sqrt{\frac{1\times 8+1}{8}}
The square of \sqrt{2} is 2.
6\sqrt{2}-2\sqrt{2}-\frac{1}{7}\sqrt{88}+\sqrt{\frac{1\times 8+1}{8}}
Cancel out 2, the greatest common factor in 4 and 2.
4\sqrt{2}-\frac{1}{7}\sqrt{88}+\sqrt{\frac{1\times 8+1}{8}}
Combine 6\sqrt{2} and -2\sqrt{2} to get 4\sqrt{2}.
4\sqrt{2}-\frac{1}{7}\times 2\sqrt{22}+\sqrt{\frac{1\times 8+1}{8}}
Factor 88=2^{2}\times 22. Rewrite the square root of the product \sqrt{2^{2}\times 22} as the product of square roots \sqrt{2^{2}}\sqrt{22}. Take the square root of 2^{2}.
4\sqrt{2}+\frac{-2}{7}\sqrt{22}+\sqrt{\frac{1\times 8+1}{8}}
Express -\frac{1}{7}\times 2 as a single fraction.
4\sqrt{2}-\frac{2}{7}\sqrt{22}+\sqrt{\frac{1\times 8+1}{8}}
Fraction \frac{-2}{7} can be rewritten as -\frac{2}{7} by extracting the negative sign.
4\sqrt{2}-\frac{2}{7}\sqrt{22}+\sqrt{\frac{8+1}{8}}
Multiply 1 and 8 to get 8.
4\sqrt{2}-\frac{2}{7}\sqrt{22}+\sqrt{\frac{9}{8}}
Add 8 and 1 to get 9.
4\sqrt{2}-\frac{2}{7}\sqrt{22}+\frac{\sqrt{9}}{\sqrt{8}}
Rewrite the square root of the division \sqrt{\frac{9}{8}} as the division of square roots \frac{\sqrt{9}}{\sqrt{8}}.
4\sqrt{2}-\frac{2}{7}\sqrt{22}+\frac{3}{\sqrt{8}}
Calculate the square root of 9 and get 3.
4\sqrt{2}-\frac{2}{7}\sqrt{22}+\frac{3}{2\sqrt{2}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
4\sqrt{2}-\frac{2}{7}\sqrt{22}+\frac{3\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{3}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
4\sqrt{2}-\frac{2}{7}\sqrt{22}+\frac{3\sqrt{2}}{2\times 2}
The square of \sqrt{2} is 2.
4\sqrt{2}-\frac{2}{7}\sqrt{22}+\frac{3\sqrt{2}}{4}
Multiply 2 and 2 to get 4.
\frac{19}{4}\sqrt{2}-\frac{2}{7}\sqrt{22}
Combine 4\sqrt{2} and \frac{3\sqrt{2}}{4} to get \frac{19}{4}\sqrt{2}.