Evaluate
\frac{17592186044415}{1099511627776}\approx 16
Factor
\frac{3 \cdot 5 \cdot 23 \cdot 89 \cdot 397 \cdot 683 \cdot 2113}{2 ^ {40}} = 15\frac{1099511627775}{1099511627776} = 15.99999999999909
Share
Copied to clipboard
8+8-16^{-10}
Calculate the square root of 64 and get 8.
16-16^{-10}
Add 8 and 8 to get 16.
16-\frac{1}{1099511627776}
Calculate 16 to the power of -10 and get \frac{1}{1099511627776}.
\frac{17592186044415}{1099511627776}
Subtract \frac{1}{1099511627776} from 16 to get \frac{17592186044415}{1099511627776}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}