Evaluate
\frac{72\sqrt{34}}{17}\approx 24.695796261
Share
Copied to clipboard
\sqrt{625-\left(\frac{136}{17}+\frac{121}{17}\right)}
Convert 8 to fraction \frac{136}{17}.
\sqrt{625-\frac{136+121}{17}}
Since \frac{136}{17} and \frac{121}{17} have the same denominator, add them by adding their numerators.
\sqrt{625-\frac{257}{17}}
Add 136 and 121 to get 257.
\sqrt{\frac{10625}{17}-\frac{257}{17}}
Convert 625 to fraction \frac{10625}{17}.
\sqrt{\frac{10625-257}{17}}
Since \frac{10625}{17} and \frac{257}{17} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{10368}{17}}
Subtract 257 from 10625 to get 10368.
\frac{\sqrt{10368}}{\sqrt{17}}
Rewrite the square root of the division \sqrt{\frac{10368}{17}} as the division of square roots \frac{\sqrt{10368}}{\sqrt{17}}.
\frac{72\sqrt{2}}{\sqrt{17}}
Factor 10368=72^{2}\times 2. Rewrite the square root of the product \sqrt{72^{2}\times 2} as the product of square roots \sqrt{72^{2}}\sqrt{2}. Take the square root of 72^{2}.
\frac{72\sqrt{2}\sqrt{17}}{\left(\sqrt{17}\right)^{2}}
Rationalize the denominator of \frac{72\sqrt{2}}{\sqrt{17}} by multiplying numerator and denominator by \sqrt{17}.
\frac{72\sqrt{2}\sqrt{17}}{17}
The square of \sqrt{17} is 17.
\frac{72\sqrt{34}}{17}
To multiply \sqrt{2} and \sqrt{17}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}