Evaluate
\frac{12\sqrt{6}}{7}\approx 4.199125273
Share
Copied to clipboard
\sqrt{36-\left(\frac{6^{2}+7^{2}-5^{2}}{2\times 7}\right)^{2}}
Calculate 6 to the power of 2 and get 36.
\sqrt{36-\left(\frac{36+7^{2}-5^{2}}{2\times 7}\right)^{2}}
Calculate 6 to the power of 2 and get 36.
\sqrt{36-\left(\frac{36+49-5^{2}}{2\times 7}\right)^{2}}
Calculate 7 to the power of 2 and get 49.
\sqrt{36-\left(\frac{85-5^{2}}{2\times 7}\right)^{2}}
Add 36 and 49 to get 85.
\sqrt{36-\left(\frac{85-25}{2\times 7}\right)^{2}}
Calculate 5 to the power of 2 and get 25.
\sqrt{36-\left(\frac{60}{2\times 7}\right)^{2}}
Subtract 25 from 85 to get 60.
\sqrt{36-\left(\frac{60}{14}\right)^{2}}
Multiply 2 and 7 to get 14.
\sqrt{36-\left(\frac{30}{7}\right)^{2}}
Reduce the fraction \frac{60}{14} to lowest terms by extracting and canceling out 2.
\sqrt{36-\frac{900}{49}}
Calculate \frac{30}{7} to the power of 2 and get \frac{900}{49}.
\sqrt{\frac{864}{49}}
Subtract \frac{900}{49} from 36 to get \frac{864}{49}.
\frac{\sqrt{864}}{\sqrt{49}}
Rewrite the square root of the division \sqrt{\frac{864}{49}} as the division of square roots \frac{\sqrt{864}}{\sqrt{49}}.
\frac{12\sqrt{6}}{\sqrt{49}}
Factor 864=12^{2}\times 6. Rewrite the square root of the product \sqrt{12^{2}\times 6} as the product of square roots \sqrt{12^{2}}\sqrt{6}. Take the square root of 12^{2}.
\frac{12\sqrt{6}}{7}
Calculate the square root of 49 and get 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}