Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{6+x}+\sqrt{x+2}\right)^{2}=\left(2\sqrt{3+x}\right)^{2}
Square both sides of the equation.
\left(\sqrt{6+x}\right)^{2}+2\sqrt{6+x}\sqrt{x+2}+\left(\sqrt{x+2}\right)^{2}=\left(2\sqrt{3+x}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{6+x}+\sqrt{x+2}\right)^{2}.
6+x+2\sqrt{6+x}\sqrt{x+2}+\left(\sqrt{x+2}\right)^{2}=\left(2\sqrt{3+x}\right)^{2}
Calculate \sqrt{6+x} to the power of 2 and get 6+x.
6+x+2\sqrt{6+x}\sqrt{x+2}+x+2=\left(2\sqrt{3+x}\right)^{2}
Calculate \sqrt{x+2} to the power of 2 and get x+2.
6+2x+2\sqrt{6+x}\sqrt{x+2}+2=\left(2\sqrt{3+x}\right)^{2}
Combine x and x to get 2x.
8+2x+2\sqrt{6+x}\sqrt{x+2}=\left(2\sqrt{3+x}\right)^{2}
Add 6 and 2 to get 8.
8+2x+2\sqrt{6+x}\sqrt{x+2}=2^{2}\left(\sqrt{3+x}\right)^{2}
Expand \left(2\sqrt{3+x}\right)^{2}.
8+2x+2\sqrt{6+x}\sqrt{x+2}=4\left(\sqrt{3+x}\right)^{2}
Calculate 2 to the power of 2 and get 4.
8+2x+2\sqrt{6+x}\sqrt{x+2}=4\left(3+x\right)
Calculate \sqrt{3+x} to the power of 2 and get 3+x.
8+2x+2\sqrt{6+x}\sqrt{x+2}=12+4x
Use the distributive property to multiply 4 by 3+x.
2\sqrt{6+x}\sqrt{x+2}=12+4x-\left(8+2x\right)
Subtract 8+2x from both sides of the equation.
2\sqrt{6+x}\sqrt{x+2}=12+4x-8-2x
To find the opposite of 8+2x, find the opposite of each term.
2\sqrt{6+x}\sqrt{x+2}=4+4x-2x
Subtract 8 from 12 to get 4.
2\sqrt{6+x}\sqrt{x+2}=4+2x
Combine 4x and -2x to get 2x.
\left(2\sqrt{6+x}\sqrt{x+2}\right)^{2}=\left(4+2x\right)^{2}
Square both sides of the equation.
2^{2}\left(\sqrt{6+x}\right)^{2}\left(\sqrt{x+2}\right)^{2}=\left(4+2x\right)^{2}
Expand \left(2\sqrt{6+x}\sqrt{x+2}\right)^{2}.
4\left(\sqrt{6+x}\right)^{2}\left(\sqrt{x+2}\right)^{2}=\left(4+2x\right)^{2}
Calculate 2 to the power of 2 and get 4.
4\left(6+x\right)\left(\sqrt{x+2}\right)^{2}=\left(4+2x\right)^{2}
Calculate \sqrt{6+x} to the power of 2 and get 6+x.
4\left(6+x\right)\left(x+2\right)=\left(4+2x\right)^{2}
Calculate \sqrt{x+2} to the power of 2 and get x+2.
\left(24+4x\right)\left(x+2\right)=\left(4+2x\right)^{2}
Use the distributive property to multiply 4 by 6+x.
24x+48+4x^{2}+8x=\left(4+2x\right)^{2}
Apply the distributive property by multiplying each term of 24+4x by each term of x+2.
32x+48+4x^{2}=\left(4+2x\right)^{2}
Combine 24x and 8x to get 32x.
32x+48+4x^{2}=16+16x+4x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(4+2x\right)^{2}.
32x+48+4x^{2}-16x=16+4x^{2}
Subtract 16x from both sides.
16x+48+4x^{2}=16+4x^{2}
Combine 32x and -16x to get 16x.
16x+48+4x^{2}-4x^{2}=16
Subtract 4x^{2} from both sides.
16x+48=16
Combine 4x^{2} and -4x^{2} to get 0.
16x=16-48
Subtract 48 from both sides.
16x=-32
Subtract 48 from 16 to get -32.
x=\frac{-32}{16}
Divide both sides by 16.
x=-2
Divide -32 by 16 to get -2.
\sqrt{6-2}+\sqrt{-2+2}=2\sqrt{3-2}
Substitute -2 for x in the equation \sqrt{6+x}+\sqrt{x+2}=2\sqrt{3+x}.
2=2
Simplify. The value x=-2 satisfies the equation.
x=-2
Equation \sqrt{x+2}+\sqrt{x+6}=2\sqrt{x+3} has a unique solution.