Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sqrt{5x-6}=2+\sqrt{x-2}
Subtract -\sqrt{x-2} from both sides of the equation.
\left(\sqrt{5x-6}\right)^{2}=\left(2+\sqrt{x-2}\right)^{2}
Square both sides of the equation.
5x-6=\left(2+\sqrt{x-2}\right)^{2}
Calculate \sqrt{5x-6} to the power of 2 and get 5x-6.
5x-6=4+4\sqrt{x-2}+\left(\sqrt{x-2}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+\sqrt{x-2}\right)^{2}.
5x-6=4+4\sqrt{x-2}+x-2
Calculate \sqrt{x-2} to the power of 2 and get x-2.
5x-6=2+4\sqrt{x-2}+x
Subtract 2 from 4 to get 2.
5x-6-\left(2+x\right)=4\sqrt{x-2}
Subtract 2+x from both sides of the equation.
5x-6-2-x=4\sqrt{x-2}
To find the opposite of 2+x, find the opposite of each term.
5x-8-x=4\sqrt{x-2}
Subtract 2 from -6 to get -8.
4x-8=4\sqrt{x-2}
Combine 5x and -x to get 4x.
\left(4x-8\right)^{2}=\left(4\sqrt{x-2}\right)^{2}
Square both sides of the equation.
16x^{2}-64x+64=\left(4\sqrt{x-2}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4x-8\right)^{2}.
16x^{2}-64x+64=4^{2}\left(\sqrt{x-2}\right)^{2}
Expand \left(4\sqrt{x-2}\right)^{2}.
16x^{2}-64x+64=16\left(\sqrt{x-2}\right)^{2}
Calculate 4 to the power of 2 and get 16.
16x^{2}-64x+64=16\left(x-2\right)
Calculate \sqrt{x-2} to the power of 2 and get x-2.
16x^{2}-64x+64=16x-32
Use the distributive property to multiply 16 by x-2.
16x^{2}-64x+64-16x=-32
Subtract 16x from both sides.
16x^{2}-80x+64=-32
Combine -64x and -16x to get -80x.
16x^{2}-80x+64+32=0
Add 32 to both sides.
16x^{2}-80x+96=0
Add 64 and 32 to get 96.
x=\frac{-\left(-80\right)±\sqrt{\left(-80\right)^{2}-4\times 16\times 96}}{2\times 16}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 16 for a, -80 for b, and 96 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-80\right)±\sqrt{6400-4\times 16\times 96}}{2\times 16}
Square -80.
x=\frac{-\left(-80\right)±\sqrt{6400-64\times 96}}{2\times 16}
Multiply -4 times 16.
x=\frac{-\left(-80\right)±\sqrt{6400-6144}}{2\times 16}
Multiply -64 times 96.
x=\frac{-\left(-80\right)±\sqrt{256}}{2\times 16}
Add 6400 to -6144.
x=\frac{-\left(-80\right)±16}{2\times 16}
Take the square root of 256.
x=\frac{80±16}{2\times 16}
The opposite of -80 is 80.
x=\frac{80±16}{32}
Multiply 2 times 16.
x=\frac{96}{32}
Now solve the equation x=\frac{80±16}{32} when ± is plus. Add 80 to 16.
x=3
Divide 96 by 32.
x=\frac{64}{32}
Now solve the equation x=\frac{80±16}{32} when ± is minus. Subtract 16 from 80.
x=2
Divide 64 by 32.
x=3 x=2
The equation is now solved.
\sqrt{5\times 3-6}-\sqrt{3-2}=2
Substitute 3 for x in the equation \sqrt{5x-6}-\sqrt{x-2}=2.
2=2
Simplify. The value x=3 satisfies the equation.
\sqrt{5\times 2-6}-\sqrt{2-2}=2
Substitute 2 for x in the equation \sqrt{5x-6}-\sqrt{x-2}=2.
2=2
Simplify. The value x=2 satisfies the equation.
x=3 x=2
List all solutions of \sqrt{5x-6}=\sqrt{x-2}+2.