Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{5x-1}-\sqrt{3-x}\right)^{2}=\left(\sqrt{2x}\right)^{2}
Square both sides of the equation.
\left(\sqrt{5x-1}\right)^{2}-2\sqrt{5x-1}\sqrt{3-x}+\left(\sqrt{3-x}\right)^{2}=\left(\sqrt{2x}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{5x-1}-\sqrt{3-x}\right)^{2}.
5x-1-2\sqrt{5x-1}\sqrt{3-x}+\left(\sqrt{3-x}\right)^{2}=\left(\sqrt{2x}\right)^{2}
Calculate \sqrt{5x-1} to the power of 2 and get 5x-1.
5x-1-2\sqrt{5x-1}\sqrt{3-x}+3-x=\left(\sqrt{2x}\right)^{2}
Calculate \sqrt{3-x} to the power of 2 and get 3-x.
5x+2-2\sqrt{5x-1}\sqrt{3-x}-x=\left(\sqrt{2x}\right)^{2}
Add -1 and 3 to get 2.
4x+2-2\sqrt{5x-1}\sqrt{3-x}=\left(\sqrt{2x}\right)^{2}
Combine 5x and -x to get 4x.
4x+2-2\sqrt{5x-1}\sqrt{3-x}=2x
Calculate \sqrt{2x} to the power of 2 and get 2x.
-2\sqrt{5x-1}\sqrt{3-x}=2x-\left(4x+2\right)
Subtract 4x+2 from both sides of the equation.
-2\sqrt{5x-1}\sqrt{3-x}=2x-4x-2
To find the opposite of 4x+2, find the opposite of each term.
-2\sqrt{5x-1}\sqrt{3-x}=-2x-2
Combine 2x and -4x to get -2x.
\left(-2\sqrt{5x-1}\sqrt{3-x}\right)^{2}=\left(-2x-2\right)^{2}
Square both sides of the equation.
\left(-2\right)^{2}\left(\sqrt{5x-1}\right)^{2}\left(\sqrt{3-x}\right)^{2}=\left(-2x-2\right)^{2}
Expand \left(-2\sqrt{5x-1}\sqrt{3-x}\right)^{2}.
4\left(\sqrt{5x-1}\right)^{2}\left(\sqrt{3-x}\right)^{2}=\left(-2x-2\right)^{2}
Calculate -2 to the power of 2 and get 4.
4\left(5x-1\right)\left(\sqrt{3-x}\right)^{2}=\left(-2x-2\right)^{2}
Calculate \sqrt{5x-1} to the power of 2 and get 5x-1.
4\left(5x-1\right)\left(3-x\right)=\left(-2x-2\right)^{2}
Calculate \sqrt{3-x} to the power of 2 and get 3-x.
\left(20x-4\right)\left(3-x\right)=\left(-2x-2\right)^{2}
Use the distributive property to multiply 4 by 5x-1.
60x-20x^{2}-12+4x=\left(-2x-2\right)^{2}
Apply the distributive property by multiplying each term of 20x-4 by each term of 3-x.
64x-20x^{2}-12=\left(-2x-2\right)^{2}
Combine 60x and 4x to get 64x.
64x-20x^{2}-12=4x^{2}+8x+4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-2x-2\right)^{2}.
64x-20x^{2}-12-4x^{2}=8x+4
Subtract 4x^{2} from both sides.
64x-24x^{2}-12=8x+4
Combine -20x^{2} and -4x^{2} to get -24x^{2}.
64x-24x^{2}-12-8x=4
Subtract 8x from both sides.
56x-24x^{2}-12=4
Combine 64x and -8x to get 56x.
56x-24x^{2}-12-4=0
Subtract 4 from both sides.
56x-24x^{2}-16=0
Subtract 4 from -12 to get -16.
7x-3x^{2}-2=0
Divide both sides by 8.
-3x^{2}+7x-2=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=7 ab=-3\left(-2\right)=6
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -3x^{2}+ax+bx-2. To find a and b, set up a system to be solved.
1,6 2,3
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 6.
1+6=7 2+3=5
Calculate the sum for each pair.
a=6 b=1
The solution is the pair that gives sum 7.
\left(-3x^{2}+6x\right)+\left(x-2\right)
Rewrite -3x^{2}+7x-2 as \left(-3x^{2}+6x\right)+\left(x-2\right).
3x\left(-x+2\right)-\left(-x+2\right)
Factor out 3x in the first and -1 in the second group.
\left(-x+2\right)\left(3x-1\right)
Factor out common term -x+2 by using distributive property.
x=2 x=\frac{1}{3}
To find equation solutions, solve -x+2=0 and 3x-1=0.
\sqrt{5\times 2-1}-\sqrt{3-2}=\sqrt{2\times 2}
Substitute 2 for x in the equation \sqrt{5x-1}-\sqrt{3-x}=\sqrt{2x}.
2=2
Simplify. The value x=2 satisfies the equation.
\sqrt{5\times \frac{1}{3}-1}-\sqrt{3-\frac{1}{3}}=\sqrt{2\times \frac{1}{3}}
Substitute \frac{1}{3} for x in the equation \sqrt{5x-1}-\sqrt{3-x}=\sqrt{2x}.
-\frac{1}{3}\times 6^{\frac{1}{2}}=\frac{1}{3}\times 6^{\frac{1}{2}}
Simplify. The value x=\frac{1}{3} does not satisfy the equation because the left and the right hand side have opposite signs.
\sqrt{5\times 2-1}-\sqrt{3-2}=\sqrt{2\times 2}
Substitute 2 for x in the equation \sqrt{5x-1}-\sqrt{3-x}=\sqrt{2x}.
2=2
Simplify. The value x=2 satisfies the equation.
x=2
Equation \sqrt{5x-1}-\sqrt{3-x}=\sqrt{2x} has a unique solution.