Solve for x
x = \frac{21 - \sqrt{265}}{2} \approx 2.360589702
Graph
Share
Copied to clipboard
\left(\sqrt{5x+20}\right)^{2}=\left(8-x\right)^{2}
Square both sides of the equation.
5x+20=\left(8-x\right)^{2}
Calculate \sqrt{5x+20} to the power of 2 and get 5x+20.
5x+20=64-16x+x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(8-x\right)^{2}.
5x+20-64=-16x+x^{2}
Subtract 64 from both sides.
5x-44=-16x+x^{2}
Subtract 64 from 20 to get -44.
5x-44+16x=x^{2}
Add 16x to both sides.
21x-44=x^{2}
Combine 5x and 16x to get 21x.
21x-44-x^{2}=0
Subtract x^{2} from both sides.
-x^{2}+21x-44=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-21±\sqrt{21^{2}-4\left(-1\right)\left(-44\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 21 for b, and -44 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-21±\sqrt{441-4\left(-1\right)\left(-44\right)}}{2\left(-1\right)}
Square 21.
x=\frac{-21±\sqrt{441+4\left(-44\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-21±\sqrt{441-176}}{2\left(-1\right)}
Multiply 4 times -44.
x=\frac{-21±\sqrt{265}}{2\left(-1\right)}
Add 441 to -176.
x=\frac{-21±\sqrt{265}}{-2}
Multiply 2 times -1.
x=\frac{\sqrt{265}-21}{-2}
Now solve the equation x=\frac{-21±\sqrt{265}}{-2} when ± is plus. Add -21 to \sqrt{265}.
x=\frac{21-\sqrt{265}}{2}
Divide -21+\sqrt{265} by -2.
x=\frac{-\sqrt{265}-21}{-2}
Now solve the equation x=\frac{-21±\sqrt{265}}{-2} when ± is minus. Subtract \sqrt{265} from -21.
x=\frac{\sqrt{265}+21}{2}
Divide -21-\sqrt{265} by -2.
x=\frac{21-\sqrt{265}}{2} x=\frac{\sqrt{265}+21}{2}
The equation is now solved.
\sqrt{5\times \frac{21-\sqrt{265}}{2}+20}=8-\frac{21-\sqrt{265}}{2}
Substitute \frac{21-\sqrt{265}}{2} for x in the equation \sqrt{5x+20}=8-x.
-\left(\frac{5}{2}-\frac{1}{2}\times 265^{\frac{1}{2}}\right)=-\frac{5}{2}+\frac{1}{2}\times 265^{\frac{1}{2}}
Simplify. The value x=\frac{21-\sqrt{265}}{2} satisfies the equation.
\sqrt{5\times \frac{\sqrt{265}+21}{2}+20}=8-\frac{\sqrt{265}+21}{2}
Substitute \frac{\sqrt{265}+21}{2} for x in the equation \sqrt{5x+20}=8-x.
\frac{5}{2}+\frac{1}{2}\times 265^{\frac{1}{2}}=-\frac{5}{2}-\frac{1}{2}\times 265^{\frac{1}{2}}
Simplify. The value x=\frac{\sqrt{265}+21}{2} does not satisfy the equation because the left and the right hand side have opposite signs.
x=\frac{21-\sqrt{265}}{2}
Equation \sqrt{5x+20}=8-x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}