Solve for x
x = \frac{9}{4} = 2\frac{1}{4} = 2.25
Graph
Share
Copied to clipboard
\sqrt{5x+1}=2+\sqrt{x}
Subtract -\sqrt{x} from both sides of the equation.
\left(\sqrt{5x+1}\right)^{2}=\left(2+\sqrt{x}\right)^{2}
Square both sides of the equation.
5x+1=\left(2+\sqrt{x}\right)^{2}
Calculate \sqrt{5x+1} to the power of 2 and get 5x+1.
5x+1=4+4\sqrt{x}+\left(\sqrt{x}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+\sqrt{x}\right)^{2}.
5x+1=4+4\sqrt{x}+x
Calculate \sqrt{x} to the power of 2 and get x.
5x+1-\left(4+x\right)=4\sqrt{x}
Subtract 4+x from both sides of the equation.
5x+1-4-x=4\sqrt{x}
To find the opposite of 4+x, find the opposite of each term.
5x-3-x=4\sqrt{x}
Subtract 4 from 1 to get -3.
4x-3=4\sqrt{x}
Combine 5x and -x to get 4x.
\left(4x-3\right)^{2}=\left(4\sqrt{x}\right)^{2}
Square both sides of the equation.
16x^{2}-24x+9=\left(4\sqrt{x}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4x-3\right)^{2}.
16x^{2}-24x+9=4^{2}\left(\sqrt{x}\right)^{2}
Expand \left(4\sqrt{x}\right)^{2}.
16x^{2}-24x+9=16\left(\sqrt{x}\right)^{2}
Calculate 4 to the power of 2 and get 16.
16x^{2}-24x+9=16x
Calculate \sqrt{x} to the power of 2 and get x.
16x^{2}-24x+9-16x=0
Subtract 16x from both sides.
16x^{2}-40x+9=0
Combine -24x and -16x to get -40x.
a+b=-40 ab=16\times 9=144
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 16x^{2}+ax+bx+9. To find a and b, set up a system to be solved.
-1,-144 -2,-72 -3,-48 -4,-36 -6,-24 -8,-18 -9,-16 -12,-12
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 144.
-1-144=-145 -2-72=-74 -3-48=-51 -4-36=-40 -6-24=-30 -8-18=-26 -9-16=-25 -12-12=-24
Calculate the sum for each pair.
a=-36 b=-4
The solution is the pair that gives sum -40.
\left(16x^{2}-36x\right)+\left(-4x+9\right)
Rewrite 16x^{2}-40x+9 as \left(16x^{2}-36x\right)+\left(-4x+9\right).
4x\left(4x-9\right)-\left(4x-9\right)
Factor out 4x in the first and -1 in the second group.
\left(4x-9\right)\left(4x-1\right)
Factor out common term 4x-9 by using distributive property.
x=\frac{9}{4} x=\frac{1}{4}
To find equation solutions, solve 4x-9=0 and 4x-1=0.
\sqrt{5\times \frac{9}{4}+1}-\sqrt{\frac{9}{4}}=2
Substitute \frac{9}{4} for x in the equation \sqrt{5x+1}-\sqrt{x}=2.
2=2
Simplify. The value x=\frac{9}{4} satisfies the equation.
\sqrt{5\times \frac{1}{4}+1}-\sqrt{\frac{1}{4}}=2
Substitute \frac{1}{4} for x in the equation \sqrt{5x+1}-\sqrt{x}=2.
1=2
Simplify. The value x=\frac{1}{4} does not satisfy the equation.
\sqrt{5\times \frac{9}{4}+1}-\sqrt{\frac{9}{4}}=2
Substitute \frac{9}{4} for x in the equation \sqrt{5x+1}-\sqrt{x}=2.
2=2
Simplify. The value x=\frac{9}{4} satisfies the equation.
x=\frac{9}{4}
Equation \sqrt{5x+1}=\sqrt{x}+2 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}