Solve for x
x = \frac{56}{9} = 6\frac{2}{9} \approx 6.222222222
Graph
Share
Copied to clipboard
\sqrt{5x+1}=2+\sqrt{2x+1}
Subtract -\sqrt{2x+1} from both sides of the equation.
\left(\sqrt{5x+1}\right)^{2}=\left(2+\sqrt{2x+1}\right)^{2}
Square both sides of the equation.
5x+1=\left(2+\sqrt{2x+1}\right)^{2}
Calculate \sqrt{5x+1} to the power of 2 and get 5x+1.
5x+1=4+4\sqrt{2x+1}+\left(\sqrt{2x+1}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+\sqrt{2x+1}\right)^{2}.
5x+1=4+4\sqrt{2x+1}+2x+1
Calculate \sqrt{2x+1} to the power of 2 and get 2x+1.
5x+1=5+4\sqrt{2x+1}+2x
Add 4 and 1 to get 5.
5x+1-\left(5+2x\right)=4\sqrt{2x+1}
Subtract 5+2x from both sides of the equation.
5x+1-5-2x=4\sqrt{2x+1}
To find the opposite of 5+2x, find the opposite of each term.
5x-4-2x=4\sqrt{2x+1}
Subtract 5 from 1 to get -4.
3x-4=4\sqrt{2x+1}
Combine 5x and -2x to get 3x.
\left(3x-4\right)^{2}=\left(4\sqrt{2x+1}\right)^{2}
Square both sides of the equation.
9x^{2}-24x+16=\left(4\sqrt{2x+1}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-4\right)^{2}.
9x^{2}-24x+16=4^{2}\left(\sqrt{2x+1}\right)^{2}
Expand \left(4\sqrt{2x+1}\right)^{2}.
9x^{2}-24x+16=16\left(\sqrt{2x+1}\right)^{2}
Calculate 4 to the power of 2 and get 16.
9x^{2}-24x+16=16\left(2x+1\right)
Calculate \sqrt{2x+1} to the power of 2 and get 2x+1.
9x^{2}-24x+16=32x+16
Use the distributive property to multiply 16 by 2x+1.
9x^{2}-24x+16-32x=16
Subtract 32x from both sides.
9x^{2}-56x+16=16
Combine -24x and -32x to get -56x.
9x^{2}-56x+16-16=0
Subtract 16 from both sides.
9x^{2}-56x=0
Subtract 16 from 16 to get 0.
x\left(9x-56\right)=0
Factor out x.
x=0 x=\frac{56}{9}
To find equation solutions, solve x=0 and 9x-56=0.
\sqrt{5\times 0+1}-\sqrt{2\times 0+1}=2
Substitute 0 for x in the equation \sqrt{5x+1}-\sqrt{2x+1}=2.
0=2
Simplify. The value x=0 does not satisfy the equation.
\sqrt{5\times \frac{56}{9}+1}-\sqrt{2\times \frac{56}{9}+1}=2
Substitute \frac{56}{9} for x in the equation \sqrt{5x+1}-\sqrt{2x+1}=2.
2=2
Simplify. The value x=\frac{56}{9} satisfies the equation.
x=\frac{56}{9}
Equation \sqrt{5x+1}=\sqrt{2x+1}+2 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}