Solve for x
x=\frac{\sqrt{89}-35}{2}\approx -12.783009434
Graph
Share
Copied to clipboard
\left(\sqrt{5-x}\right)^{2}=\left(x+17\right)^{2}
Square both sides of the equation.
5-x=\left(x+17\right)^{2}
Calculate \sqrt{5-x} to the power of 2 and get 5-x.
5-x=x^{2}+34x+289
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+17\right)^{2}.
5-x-x^{2}=34x+289
Subtract x^{2} from both sides.
5-x-x^{2}-34x=289
Subtract 34x from both sides.
5-35x-x^{2}=289
Combine -x and -34x to get -35x.
5-35x-x^{2}-289=0
Subtract 289 from both sides.
-284-35x-x^{2}=0
Subtract 289 from 5 to get -284.
-x^{2}-35x-284=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-35\right)±\sqrt{\left(-35\right)^{2}-4\left(-1\right)\left(-284\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -35 for b, and -284 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-35\right)±\sqrt{1225-4\left(-1\right)\left(-284\right)}}{2\left(-1\right)}
Square -35.
x=\frac{-\left(-35\right)±\sqrt{1225+4\left(-284\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-35\right)±\sqrt{1225-1136}}{2\left(-1\right)}
Multiply 4 times -284.
x=\frac{-\left(-35\right)±\sqrt{89}}{2\left(-1\right)}
Add 1225 to -1136.
x=\frac{35±\sqrt{89}}{2\left(-1\right)}
The opposite of -35 is 35.
x=\frac{35±\sqrt{89}}{-2}
Multiply 2 times -1.
x=\frac{\sqrt{89}+35}{-2}
Now solve the equation x=\frac{35±\sqrt{89}}{-2} when ± is plus. Add 35 to \sqrt{89}.
x=\frac{-\sqrt{89}-35}{2}
Divide 35+\sqrt{89} by -2.
x=\frac{35-\sqrt{89}}{-2}
Now solve the equation x=\frac{35±\sqrt{89}}{-2} when ± is minus. Subtract \sqrt{89} from 35.
x=\frac{\sqrt{89}-35}{2}
Divide 35-\sqrt{89} by -2.
x=\frac{-\sqrt{89}-35}{2} x=\frac{\sqrt{89}-35}{2}
The equation is now solved.
\sqrt{5-\frac{-\sqrt{89}-35}{2}}=\frac{-\sqrt{89}-35}{2}+17
Substitute \frac{-\sqrt{89}-35}{2} for x in the equation \sqrt{5-x}=x+17.
\frac{1}{2}+\frac{1}{2}\times 89^{\frac{1}{2}}=-\frac{1}{2}\times 89^{\frac{1}{2}}-\frac{1}{2}
Simplify. The value x=\frac{-\sqrt{89}-35}{2} does not satisfy the equation because the left and the right hand side have opposite signs.
\sqrt{5-\frac{\sqrt{89}-35}{2}}=\frac{\sqrt{89}-35}{2}+17
Substitute \frac{\sqrt{89}-35}{2} for x in the equation \sqrt{5-x}=x+17.
-\left(\frac{1}{2}-\frac{1}{2}\times 89^{\frac{1}{2}}\right)=\frac{1}{2}\times 89^{\frac{1}{2}}-\frac{1}{2}
Simplify. The value x=\frac{\sqrt{89}-35}{2} satisfies the equation.
x=\frac{\sqrt{89}-35}{2}
Equation \sqrt{5-x}=x+17 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}