Solve for x
x=-\frac{5\sqrt{15}}{8}+2.5\approx 0.079385409
x=\frac{5\sqrt{15}}{8}+2.5\approx 4.920614591
Graph
Share
Copied to clipboard
\sqrt{5-x}=2.5-\sqrt{x}
Subtract \sqrt{x} from both sides of the equation.
\left(\sqrt{5-x}\right)^{2}=\left(2.5-\sqrt{x}\right)^{2}
Square both sides of the equation.
5-x=\left(2.5-\sqrt{x}\right)^{2}
Calculate \sqrt{5-x} to the power of 2 and get 5-x.
5-x=6.25-5\sqrt{x}+\left(\sqrt{x}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2.5-\sqrt{x}\right)^{2}.
5-x=6.25-5\sqrt{x}+x
Calculate \sqrt{x} to the power of 2 and get x.
5-x-\left(6.25+x\right)=-5\sqrt{x}
Subtract 6.25+x from both sides of the equation.
5-x-6.25-x=-5\sqrt{x}
To find the opposite of 6.25+x, find the opposite of each term.
-1.25-x-x=-5\sqrt{x}
Subtract 6.25 from 5 to get -1.25.
-1.25-2x=-5\sqrt{x}
Combine -x and -x to get -2x.
\left(-1.25-2x\right)^{2}=\left(-5\sqrt{x}\right)^{2}
Square both sides of the equation.
1.5625+5x+4x^{2}=\left(-5\sqrt{x}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-1.25-2x\right)^{2}.
1.5625+5x+4x^{2}=\left(-5\right)^{2}\left(\sqrt{x}\right)^{2}
Expand \left(-5\sqrt{x}\right)^{2}.
1.5625+5x+4x^{2}=25\left(\sqrt{x}\right)^{2}
Calculate -5 to the power of 2 and get 25.
1.5625+5x+4x^{2}=25x
Calculate \sqrt{x} to the power of 2 and get x.
1.5625+5x+4x^{2}-25x=0
Subtract 25x from both sides.
1.5625-20x+4x^{2}=0
Combine 5x and -25x to get -20x.
4x^{2}-20x+1.5625=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 4\times 1.5625}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -20 for b, and 1.5625 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-20\right)±\sqrt{400-4\times 4\times 1.5625}}{2\times 4}
Square -20.
x=\frac{-\left(-20\right)±\sqrt{400-16\times 1.5625}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-20\right)±\sqrt{400-25}}{2\times 4}
Multiply -16 times 1.5625.
x=\frac{-\left(-20\right)±\sqrt{375}}{2\times 4}
Add 400 to -25.
x=\frac{-\left(-20\right)±5\sqrt{15}}{2\times 4}
Take the square root of 375.
x=\frac{20±5\sqrt{15}}{2\times 4}
The opposite of -20 is 20.
x=\frac{20±5\sqrt{15}}{8}
Multiply 2 times 4.
x=\frac{5\sqrt{15}+20}{8}
Now solve the equation x=\frac{20±5\sqrt{15}}{8} when ± is plus. Add 20 to 5\sqrt{15}.
x=\frac{5\sqrt{15}}{8}+\frac{5}{2}
Divide 20+5\sqrt{15} by 8.
x=\frac{20-5\sqrt{15}}{8}
Now solve the equation x=\frac{20±5\sqrt{15}}{8} when ± is minus. Subtract 5\sqrt{15} from 20.
x=-\frac{5\sqrt{15}}{8}+\frac{5}{2}
Divide 20-5\sqrt{15} by 8.
x=\frac{5\sqrt{15}}{8}+\frac{5}{2} x=-\frac{5\sqrt{15}}{8}+\frac{5}{2}
The equation is now solved.
\sqrt{5-\left(\frac{5\sqrt{15}}{8}+\frac{5}{2}\right)}+\sqrt{\frac{5\sqrt{15}}{8}+\frac{5}{2}}=2.5
Substitute \frac{5\sqrt{15}}{8}+\frac{5}{2} for x in the equation \sqrt{5-x}+\sqrt{x}=2.5.
\frac{5}{2}=2.5
Simplify. The value x=\frac{5\sqrt{15}}{8}+\frac{5}{2} satisfies the equation.
\sqrt{5-\left(-\frac{5\sqrt{15}}{8}+\frac{5}{2}\right)}+\sqrt{-\frac{5\sqrt{15}}{8}+\frac{5}{2}}=2.5
Substitute -\frac{5\sqrt{15}}{8}+\frac{5}{2} for x in the equation \sqrt{5-x}+\sqrt{x}=2.5.
\frac{5}{2}=2.5
Simplify. The value x=-\frac{5\sqrt{15}}{8}+\frac{5}{2} satisfies the equation.
x=\frac{5\sqrt{15}}{8}+\frac{5}{2} x=-\frac{5\sqrt{15}}{8}+\frac{5}{2}
List all solutions of \sqrt{5-x}=-\sqrt{x}+2.5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}