Solve for x
x=2
Graph
Share
Copied to clipboard
\sqrt{5-2x}=-1+x
Subtract -x from both sides of the equation.
\left(\sqrt{5-2x}\right)^{2}=\left(-1+x\right)^{2}
Square both sides of the equation.
5-2x=\left(-1+x\right)^{2}
Calculate \sqrt{5-2x} to the power of 2 and get 5-2x.
5-2x=1-2x+x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-1+x\right)^{2}.
5-2x-1=-2x+x^{2}
Subtract 1 from both sides.
4-2x=-2x+x^{2}
Subtract 1 from 5 to get 4.
4-2x+2x=x^{2}
Add 2x to both sides.
4=x^{2}
Combine -2x and 2x to get 0.
x^{2}=4
Swap sides so that all variable terms are on the left hand side.
x^{2}-4=0
Subtract 4 from both sides.
\left(x-2\right)\left(x+2\right)=0
Consider x^{2}-4. Rewrite x^{2}-4 as x^{2}-2^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=2 x=-2
To find equation solutions, solve x-2=0 and x+2=0.
\sqrt{5-2\times 2}-2=-1
Substitute 2 for x in the equation \sqrt{5-2x}-x=-1.
-1=-1
Simplify. The value x=2 satisfies the equation.
\sqrt{5-2\left(-2\right)}-\left(-2\right)=-1
Substitute -2 for x in the equation \sqrt{5-2x}-x=-1.
5=-1
Simplify. The value x=-2 does not satisfy the equation because the left and the right hand side have opposite signs.
x=2
Equation \sqrt{5-2x}=x-1 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}