Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{5}-\frac{\sqrt{5}+2}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}
Rationalize the denominator of \frac{1}{\sqrt{5}-2} by multiplying numerator and denominator by \sqrt{5}+2.
\sqrt{5}-\frac{\sqrt{5}+2}{\left(\sqrt{5}\right)^{2}-2^{2}}
Consider \left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\sqrt{5}-\frac{\sqrt{5}+2}{5-4}
Square \sqrt{5}. Square 2.
\sqrt{5}-\frac{\sqrt{5}+2}{1}
Subtract 4 from 5 to get 1.
\sqrt{5}-\left(\sqrt{5}+2\right)
Anything divided by one gives itself.
\sqrt{5}-\sqrt{5}-2
To find the opposite of \sqrt{5}+2, find the opposite of each term.
-2
Combine \sqrt{5} and -\sqrt{5} to get 0.