Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{25+\left(\frac{5}{2}\sqrt{6}\right)^{2}}
Calculate 5 to the power of 2 and get 25.
\sqrt{25+\left(\frac{5}{2}\right)^{2}\left(\sqrt{6}\right)^{2}}
Expand \left(\frac{5}{2}\sqrt{6}\right)^{2}.
\sqrt{25+\frac{25}{4}\left(\sqrt{6}\right)^{2}}
Calculate \frac{5}{2} to the power of 2 and get \frac{25}{4}.
\sqrt{25+\frac{25}{4}\times 6}
The square of \sqrt{6} is 6.
\sqrt{25+\frac{75}{2}}
Multiply \frac{25}{4} and 6 to get \frac{75}{2}.
\sqrt{\frac{125}{2}}
Add 25 and \frac{75}{2} to get \frac{125}{2}.
\frac{\sqrt{125}}{\sqrt{2}}
Rewrite the square root of the division \sqrt{\frac{125}{2}} as the division of square roots \frac{\sqrt{125}}{\sqrt{2}}.
\frac{5\sqrt{5}}{\sqrt{2}}
Factor 125=5^{2}\times 5. Rewrite the square root of the product \sqrt{5^{2}\times 5} as the product of square roots \sqrt{5^{2}}\sqrt{5}. Take the square root of 5^{2}.
\frac{5\sqrt{5}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{5\sqrt{5}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{5\sqrt{5}\sqrt{2}}{2}
The square of \sqrt{2} is 2.
\frac{5\sqrt{10}}{2}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.