Solve for x
x=4
Graph
Share
Copied to clipboard
\sqrt{5+x}=1+\sqrt{x}
Subtract -\sqrt{x} from both sides of the equation.
\left(\sqrt{5+x}\right)^{2}=\left(1+\sqrt{x}\right)^{2}
Square both sides of the equation.
5+x=\left(1+\sqrt{x}\right)^{2}
Calculate \sqrt{5+x} to the power of 2 and get 5+x.
5+x=1+2\sqrt{x}+\left(\sqrt{x}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\sqrt{x}\right)^{2}.
5+x=1+2\sqrt{x}+x
Calculate \sqrt{x} to the power of 2 and get x.
5+x-2\sqrt{x}=1+x
Subtract 2\sqrt{x} from both sides.
5+x-2\sqrt{x}-x=1
Subtract x from both sides.
5-2\sqrt{x}=1
Combine x and -x to get 0.
-2\sqrt{x}=1-5
Subtract 5 from both sides.
-2\sqrt{x}=-4
Subtract 5 from 1 to get -4.
\sqrt{x}=\frac{-4}{-2}
Divide both sides by -2.
\sqrt{x}=2
Divide -4 by -2 to get 2.
x=4
Square both sides of the equation.
\sqrt{5+4}-\sqrt{4}=1
Substitute 4 for x in the equation \sqrt{5+x}-\sqrt{x}=1.
1=1
Simplify. The value x=4 satisfies the equation.
x=4
Equation \sqrt{x+5}=\sqrt{x}+1 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}