Evaluate
\frac{17\sqrt{3}}{2}\approx 14.722431864
Share
Copied to clipboard
4\sqrt{3}-\frac{3}{2}\sqrt{27}+\sqrt{243}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
4\sqrt{3}-\frac{3}{2}\times 3\sqrt{3}+\sqrt{243}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
4\sqrt{3}+\frac{-3\times 3}{2}\sqrt{3}+\sqrt{243}
Express -\frac{3}{2}\times 3 as a single fraction.
4\sqrt{3}+\frac{-9}{2}\sqrt{3}+\sqrt{243}
Multiply -3 and 3 to get -9.
4\sqrt{3}-\frac{9}{2}\sqrt{3}+\sqrt{243}
Fraction \frac{-9}{2} can be rewritten as -\frac{9}{2} by extracting the negative sign.
-\frac{1}{2}\sqrt{3}+\sqrt{243}
Combine 4\sqrt{3} and -\frac{9}{2}\sqrt{3} to get -\frac{1}{2}\sqrt{3}.
-\frac{1}{2}\sqrt{3}+9\sqrt{3}
Factor 243=9^{2}\times 3. Rewrite the square root of the product \sqrt{9^{2}\times 3} as the product of square roots \sqrt{9^{2}}\sqrt{3}. Take the square root of 9^{2}.
\frac{17}{2}\sqrt{3}
Combine -\frac{1}{2}\sqrt{3} and 9\sqrt{3} to get \frac{17}{2}\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}