Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

4\sqrt{3}-\frac{3}{2}\sqrt{27}+\sqrt{243}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
4\sqrt{3}-\frac{3}{2}\times 3\sqrt{3}+\sqrt{243}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
4\sqrt{3}+\frac{-3\times 3}{2}\sqrt{3}+\sqrt{243}
Express -\frac{3}{2}\times 3 as a single fraction.
4\sqrt{3}+\frac{-9}{2}\sqrt{3}+\sqrt{243}
Multiply -3 and 3 to get -9.
4\sqrt{3}-\frac{9}{2}\sqrt{3}+\sqrt{243}
Fraction \frac{-9}{2} can be rewritten as -\frac{9}{2} by extracting the negative sign.
-\frac{1}{2}\sqrt{3}+\sqrt{243}
Combine 4\sqrt{3} and -\frac{9}{2}\sqrt{3} to get -\frac{1}{2}\sqrt{3}.
-\frac{1}{2}\sqrt{3}+9\sqrt{3}
Factor 243=9^{2}\times 3. Rewrite the square root of the product \sqrt{9^{2}\times 3} as the product of square roots \sqrt{9^{2}}\sqrt{3}. Take the square root of 9^{2}.
\frac{17}{2}\sqrt{3}
Combine -\frac{1}{2}\sqrt{3} and 9\sqrt{3} to get \frac{17}{2}\sqrt{3}.