Solve for x
x = \frac{2 {(\sqrt{466} + 4)}}{15} \approx 3.411604419
Graph
Share
Copied to clipboard
\left(\sqrt{4x-6}\right)^{2}=\left(\sqrt{4x+5}-\sqrt{x-1}\right)^{2}
Square both sides of the equation.
4x-6=\left(\sqrt{4x+5}-\sqrt{x-1}\right)^{2}
Calculate \sqrt{4x-6} to the power of 2 and get 4x-6.
4x-6=\left(\sqrt{4x+5}\right)^{2}-2\sqrt{4x+5}\sqrt{x-1}+\left(\sqrt{x-1}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{4x+5}-\sqrt{x-1}\right)^{2}.
4x-6=4x+5-2\sqrt{4x+5}\sqrt{x-1}+\left(\sqrt{x-1}\right)^{2}
Calculate \sqrt{4x+5} to the power of 2 and get 4x+5.
4x-6=4x+5-2\sqrt{4x+5}\sqrt{x-1}+x-1
Calculate \sqrt{x-1} to the power of 2 and get x-1.
4x-6=5x+5-2\sqrt{4x+5}\sqrt{x-1}-1
Combine 4x and x to get 5x.
4x-6=5x+4-2\sqrt{4x+5}\sqrt{x-1}
Subtract 1 from 5 to get 4.
4x-6-\left(5x+4\right)=-2\sqrt{4x+5}\sqrt{x-1}
Subtract 5x+4 from both sides of the equation.
4x-6-5x-4=-2\sqrt{4x+5}\sqrt{x-1}
To find the opposite of 5x+4, find the opposite of each term.
-x-6-4=-2\sqrt{4x+5}\sqrt{x-1}
Combine 4x and -5x to get -x.
-x-10=-2\sqrt{4x+5}\sqrt{x-1}
Subtract 4 from -6 to get -10.
\left(-x-10\right)^{2}=\left(-2\sqrt{4x+5}\sqrt{x-1}\right)^{2}
Square both sides of the equation.
x^{2}+20x+100=\left(-2\sqrt{4x+5}\sqrt{x-1}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-x-10\right)^{2}.
x^{2}+20x+100=\left(-2\right)^{2}\left(\sqrt{4x+5}\right)^{2}\left(\sqrt{x-1}\right)^{2}
Expand \left(-2\sqrt{4x+5}\sqrt{x-1}\right)^{2}.
x^{2}+20x+100=4\left(\sqrt{4x+5}\right)^{2}\left(\sqrt{x-1}\right)^{2}
Calculate -2 to the power of 2 and get 4.
x^{2}+20x+100=4\left(4x+5\right)\left(\sqrt{x-1}\right)^{2}
Calculate \sqrt{4x+5} to the power of 2 and get 4x+5.
x^{2}+20x+100=4\left(4x+5\right)\left(x-1\right)
Calculate \sqrt{x-1} to the power of 2 and get x-1.
x^{2}+20x+100=\left(16x+20\right)\left(x-1\right)
Use the distributive property to multiply 4 by 4x+5.
x^{2}+20x+100=16x^{2}-16x+20x-20
Apply the distributive property by multiplying each term of 16x+20 by each term of x-1.
x^{2}+20x+100=16x^{2}+4x-20
Combine -16x and 20x to get 4x.
x^{2}+20x+100-16x^{2}=4x-20
Subtract 16x^{2} from both sides.
-15x^{2}+20x+100=4x-20
Combine x^{2} and -16x^{2} to get -15x^{2}.
-15x^{2}+20x+100-4x=-20
Subtract 4x from both sides.
-15x^{2}+16x+100=-20
Combine 20x and -4x to get 16x.
-15x^{2}+16x+100+20=0
Add 20 to both sides.
-15x^{2}+16x+120=0
Add 100 and 20 to get 120.
x=\frac{-16±\sqrt{16^{2}-4\left(-15\right)\times 120}}{2\left(-15\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -15 for a, 16 for b, and 120 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-16±\sqrt{256-4\left(-15\right)\times 120}}{2\left(-15\right)}
Square 16.
x=\frac{-16±\sqrt{256+60\times 120}}{2\left(-15\right)}
Multiply -4 times -15.
x=\frac{-16±\sqrt{256+7200}}{2\left(-15\right)}
Multiply 60 times 120.
x=\frac{-16±\sqrt{7456}}{2\left(-15\right)}
Add 256 to 7200.
x=\frac{-16±4\sqrt{466}}{2\left(-15\right)}
Take the square root of 7456.
x=\frac{-16±4\sqrt{466}}{-30}
Multiply 2 times -15.
x=\frac{4\sqrt{466}-16}{-30}
Now solve the equation x=\frac{-16±4\sqrt{466}}{-30} when ± is plus. Add -16 to 4\sqrt{466}.
x=\frac{8-2\sqrt{466}}{15}
Divide -16+4\sqrt{466} by -30.
x=\frac{-4\sqrt{466}-16}{-30}
Now solve the equation x=\frac{-16±4\sqrt{466}}{-30} when ± is minus. Subtract 4\sqrt{466} from -16.
x=\frac{2\sqrt{466}+8}{15}
Divide -16-4\sqrt{466} by -30.
x=\frac{8-2\sqrt{466}}{15} x=\frac{2\sqrt{466}+8}{15}
The equation is now solved.
\sqrt{4\times \frac{8-2\sqrt{466}}{15}-6}=\sqrt{4\times \frac{8-2\sqrt{466}}{15}+5}-\sqrt{\frac{8-2\sqrt{466}}{15}-1}
Substitute \frac{8-2\sqrt{466}}{15} for x in the equation \sqrt{4x-6}=\sqrt{4x+5}-\sqrt{x-1}. The expression \sqrt{4\times \frac{8-2\sqrt{466}}{15}-6} is undefined because the radicand cannot be negative.
\sqrt{4\times \frac{2\sqrt{466}+8}{15}-6}=\sqrt{4\times \frac{2\sqrt{466}+8}{15}+5}-\sqrt{\frac{2\sqrt{466}+8}{15}-1}
Substitute \frac{2\sqrt{466}+8}{15} for x in the equation \sqrt{4x-6}=\sqrt{4x+5}-\sqrt{x-1}.
\left(\frac{8}{15}\times 466^{\frac{1}{2}}-\frac{58}{15}\right)^{\frac{1}{2}}=\left(\frac{8}{15}\times 466^{\frac{1}{2}}+\frac{107}{15}\right)^{\frac{1}{2}}-\left(\frac{2}{15}\times 466^{\frac{1}{2}}-\frac{7}{15}\right)^{\frac{1}{2}}
Simplify. The value x=\frac{2\sqrt{466}+8}{15} satisfies the equation.
x=\frac{2\sqrt{466}+8}{15}
Equation \sqrt{4x-6}=\sqrt{4x+5}-\sqrt{x-1} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}