Solve for x
x=\frac{\sqrt{677}+1}{1352}\approx 0.019984633
Graph
Share
Copied to clipboard
\left(\sqrt{4x+1}\right)^{2}=\left(52x\right)^{2}
Square both sides of the equation.
4x+1=\left(52x\right)^{2}
Calculate \sqrt{4x+1} to the power of 2 and get 4x+1.
4x+1=52^{2}x^{2}
Expand \left(52x\right)^{2}.
4x+1=2704x^{2}
Calculate 52 to the power of 2 and get 2704.
4x+1-2704x^{2}=0
Subtract 2704x^{2} from both sides.
-2704x^{2}+4x+1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-4±\sqrt{4^{2}-4\left(-2704\right)}}{2\left(-2704\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2704 for a, 4 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-2704\right)}}{2\left(-2704\right)}
Square 4.
x=\frac{-4±\sqrt{16+10816}}{2\left(-2704\right)}
Multiply -4 times -2704.
x=\frac{-4±\sqrt{10832}}{2\left(-2704\right)}
Add 16 to 10816.
x=\frac{-4±4\sqrt{677}}{2\left(-2704\right)}
Take the square root of 10832.
x=\frac{-4±4\sqrt{677}}{-5408}
Multiply 2 times -2704.
x=\frac{4\sqrt{677}-4}{-5408}
Now solve the equation x=\frac{-4±4\sqrt{677}}{-5408} when ± is plus. Add -4 to 4\sqrt{677}.
x=\frac{1-\sqrt{677}}{1352}
Divide -4+4\sqrt{677} by -5408.
x=\frac{-4\sqrt{677}-4}{-5408}
Now solve the equation x=\frac{-4±4\sqrt{677}}{-5408} when ± is minus. Subtract 4\sqrt{677} from -4.
x=\frac{\sqrt{677}+1}{1352}
Divide -4-4\sqrt{677} by -5408.
x=\frac{1-\sqrt{677}}{1352} x=\frac{\sqrt{677}+1}{1352}
The equation is now solved.
\sqrt{4\times \frac{1-\sqrt{677}}{1352}+1}=52\times \frac{1-\sqrt{677}}{1352}
Substitute \frac{1-\sqrt{677}}{1352} for x in the equation \sqrt{4x+1}=52x.
-\left(\frac{1}{26}-\frac{1}{26}\times 677^{\frac{1}{2}}\right)=\frac{1}{26}-\frac{1}{26}\times 677^{\frac{1}{2}}
Simplify. The value x=\frac{1-\sqrt{677}}{1352} does not satisfy the equation because the left and the right hand side have opposite signs.
\sqrt{4\times \frac{\sqrt{677}+1}{1352}+1}=52\times \frac{\sqrt{677}+1}{1352}
Substitute \frac{\sqrt{677}+1}{1352} for x in the equation \sqrt{4x+1}=52x.
\frac{1}{26}+\frac{1}{26}\times 677^{\frac{1}{2}}=\frac{1}{26}\times 677^{\frac{1}{2}}+\frac{1}{26}
Simplify. The value x=\frac{\sqrt{677}+1}{1352} satisfies the equation.
x=\frac{\sqrt{677}+1}{1352}
Equation \sqrt{4x+1}=52x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}