Solve for v
v=11
Share
Copied to clipboard
\left(\sqrt{4v+7}\right)^{2}=\left(\sqrt{6v-15}\right)^{2}
Square both sides of the equation.
4v+7=\left(\sqrt{6v-15}\right)^{2}
Calculate \sqrt{4v+7} to the power of 2 and get 4v+7.
4v+7=6v-15
Calculate \sqrt{6v-15} to the power of 2 and get 6v-15.
4v+7-6v=-15
Subtract 6v from both sides.
-2v+7=-15
Combine 4v and -6v to get -2v.
-2v=-15-7
Subtract 7 from both sides.
-2v=-22
Subtract 7 from -15 to get -22.
v=\frac{-22}{-2}
Divide both sides by -2.
v=11
Divide -22 by -2 to get 11.
\sqrt{4\times 11+7}=\sqrt{6\times 11-15}
Substitute 11 for v in the equation \sqrt{4v+7}=\sqrt{6v-15}.
51^{\frac{1}{2}}=51^{\frac{1}{2}}
Simplify. The value v=11 satisfies the equation.
v=11
Equation \sqrt{4v+7}=\sqrt{6v-15} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}