Solve for x
x=4
Graph
Share
Copied to clipboard
\left(\sqrt{32x-64}\right)^{2}=\left(2x\right)^{2}
Square both sides of the equation.
32x-64=\left(2x\right)^{2}
Calculate \sqrt{32x-64} to the power of 2 and get 32x-64.
32x-64=2^{2}x^{2}
Expand \left(2x\right)^{2}.
32x-64=4x^{2}
Calculate 2 to the power of 2 and get 4.
32x-64-4x^{2}=0
Subtract 4x^{2} from both sides.
8x-16-x^{2}=0
Divide both sides by 4.
-x^{2}+8x-16=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=8 ab=-\left(-16\right)=16
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx-16. To find a and b, set up a system to be solved.
1,16 2,8 4,4
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 16.
1+16=17 2+8=10 4+4=8
Calculate the sum for each pair.
a=4 b=4
The solution is the pair that gives sum 8.
\left(-x^{2}+4x\right)+\left(4x-16\right)
Rewrite -x^{2}+8x-16 as \left(-x^{2}+4x\right)+\left(4x-16\right).
-x\left(x-4\right)+4\left(x-4\right)
Factor out -x in the first and 4 in the second group.
\left(x-4\right)\left(-x+4\right)
Factor out common term x-4 by using distributive property.
x=4 x=4
To find equation solutions, solve x-4=0 and -x+4=0.
\sqrt{32\times 4-64}=2\times 4
Substitute 4 for x in the equation \sqrt{32x-64}=2x.
8=8
Simplify. The value x=4 satisfies the equation.
\sqrt{32\times 4-64}=2\times 4
Substitute 4 for x in the equation \sqrt{32x-64}=2x.
8=8
Simplify. The value x=4 satisfies the equation.
x=4 x=4
List all solutions of \sqrt{32x-64}=2x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}