Evaluate
\frac{7\sqrt{2}}{2}-\frac{2\sqrt{6}}{3}-5\approx -1.683245694
Share
Copied to clipboard
4\sqrt{2}-\sqrt{25}-\sqrt{\frac{1}{2}}-2\sqrt{\frac{2}{3}}
Factor 32=4^{2}\times 2. Rewrite the square root of the product \sqrt{4^{2}\times 2} as the product of square roots \sqrt{4^{2}}\sqrt{2}. Take the square root of 4^{2}.
4\sqrt{2}-5-\sqrt{\frac{1}{2}}-2\sqrt{\frac{2}{3}}
Calculate the square root of 25 and get 5.
4\sqrt{2}-5-\frac{\sqrt{1}}{\sqrt{2}}-2\sqrt{\frac{2}{3}}
Rewrite the square root of the division \sqrt{\frac{1}{2}} as the division of square roots \frac{\sqrt{1}}{\sqrt{2}}.
4\sqrt{2}-5-\frac{1}{\sqrt{2}}-2\sqrt{\frac{2}{3}}
Calculate the square root of 1 and get 1.
4\sqrt{2}-5-\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}-2\sqrt{\frac{2}{3}}
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
4\sqrt{2}-5-\frac{\sqrt{2}}{2}-2\sqrt{\frac{2}{3}}
The square of \sqrt{2} is 2.
4\sqrt{2}-5-\frac{\sqrt{2}}{2}-2\times \frac{\sqrt{2}}{\sqrt{3}}
Rewrite the square root of the division \sqrt{\frac{2}{3}} as the division of square roots \frac{\sqrt{2}}{\sqrt{3}}.
4\sqrt{2}-5-\frac{\sqrt{2}}{2}-2\times \frac{\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
4\sqrt{2}-5-\frac{\sqrt{2}}{2}-2\times \frac{\sqrt{2}\sqrt{3}}{3}
The square of \sqrt{3} is 3.
4\sqrt{2}-5-\frac{\sqrt{2}}{2}-2\times \frac{\sqrt{6}}{3}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
4\sqrt{2}-5-\frac{\sqrt{2}}{2}+\frac{-2\sqrt{6}}{3}
Express -2\times \frac{\sqrt{6}}{3} as a single fraction.
\frac{2\left(4\sqrt{2}-5\right)}{2}-\frac{\sqrt{2}}{2}+\frac{-2\sqrt{6}}{3}
To add or subtract expressions, expand them to make their denominators the same. Multiply 4\sqrt{2}-5 times \frac{2}{2}.
\frac{2\left(4\sqrt{2}-5\right)-\sqrt{2}}{2}+\frac{-2\sqrt{6}}{3}
Since \frac{2\left(4\sqrt{2}-5\right)}{2} and \frac{\sqrt{2}}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{8\sqrt{2}-10-\sqrt{2}}{2}+\frac{-2\sqrt{6}}{3}
Do the multiplications in 2\left(4\sqrt{2}-5\right)-\sqrt{2}.
\frac{7\sqrt{2}-10}{2}+\frac{-2\sqrt{6}}{3}
Do the calculations in 8\sqrt{2}-10-\sqrt{2}.
\frac{3\left(7\sqrt{2}-10\right)}{6}+\frac{2\left(-1\right)\times 2\sqrt{6}}{6}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 3 is 6. Multiply \frac{7\sqrt{2}-10}{2} times \frac{3}{3}. Multiply \frac{-2\sqrt{6}}{3} times \frac{2}{2}.
\frac{3\left(7\sqrt{2}-10\right)+2\left(-1\right)\times 2\sqrt{6}}{6}
Since \frac{3\left(7\sqrt{2}-10\right)}{6} and \frac{2\left(-1\right)\times 2\sqrt{6}}{6} have the same denominator, add them by adding their numerators.
\frac{21\sqrt{2}-30-4\sqrt{6}}{6}
Do the multiplications in 3\left(7\sqrt{2}-10\right)+2\left(-1\right)\times 2\sqrt{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}