Solve for y
y=1
Graph
Share
Copied to clipboard
\sqrt{3y-2}=-\left(\sqrt{y+3}-3\right)
Subtract \sqrt{y+3}-3 from both sides of the equation.
\sqrt{3y-2}=-\sqrt{y+3}-\left(-3\right)
To find the opposite of \sqrt{y+3}-3, find the opposite of each term.
\sqrt{3y-2}=-\sqrt{y+3}+3
The opposite of -3 is 3.
\left(\sqrt{3y-2}\right)^{2}=\left(-\sqrt{y+3}+3\right)^{2}
Square both sides of the equation.
3y-2=\left(-\sqrt{y+3}+3\right)^{2}
Calculate \sqrt{3y-2} to the power of 2 and get 3y-2.
3y-2=\left(\sqrt{y+3}\right)^{2}-6\sqrt{y+3}+9
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-\sqrt{y+3}+3\right)^{2}.
3y-2=y+3-6\sqrt{y+3}+9
Calculate \sqrt{y+3} to the power of 2 and get y+3.
3y-2=y+12-6\sqrt{y+3}
Add 3 and 9 to get 12.
3y-2-\left(y+12\right)=-6\sqrt{y+3}
Subtract y+12 from both sides of the equation.
3y-2-y-12=-6\sqrt{y+3}
To find the opposite of y+12, find the opposite of each term.
2y-2-12=-6\sqrt{y+3}
Combine 3y and -y to get 2y.
2y-14=-6\sqrt{y+3}
Subtract 12 from -2 to get -14.
\left(2y-14\right)^{2}=\left(-6\sqrt{y+3}\right)^{2}
Square both sides of the equation.
4y^{2}-56y+196=\left(-6\sqrt{y+3}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2y-14\right)^{2}.
4y^{2}-56y+196=\left(-6\right)^{2}\left(\sqrt{y+3}\right)^{2}
Expand \left(-6\sqrt{y+3}\right)^{2}.
4y^{2}-56y+196=36\left(\sqrt{y+3}\right)^{2}
Calculate -6 to the power of 2 and get 36.
4y^{2}-56y+196=36\left(y+3\right)
Calculate \sqrt{y+3} to the power of 2 and get y+3.
4y^{2}-56y+196=36y+108
Use the distributive property to multiply 36 by y+3.
4y^{2}-56y+196-36y=108
Subtract 36y from both sides.
4y^{2}-92y+196=108
Combine -56y and -36y to get -92y.
4y^{2}-92y+196-108=0
Subtract 108 from both sides.
4y^{2}-92y+88=0
Subtract 108 from 196 to get 88.
y^{2}-23y+22=0
Divide both sides by 4.
a+b=-23 ab=1\times 22=22
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as y^{2}+ay+by+22. To find a and b, set up a system to be solved.
-1,-22 -2,-11
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 22.
-1-22=-23 -2-11=-13
Calculate the sum for each pair.
a=-22 b=-1
The solution is the pair that gives sum -23.
\left(y^{2}-22y\right)+\left(-y+22\right)
Rewrite y^{2}-23y+22 as \left(y^{2}-22y\right)+\left(-y+22\right).
y\left(y-22\right)-\left(y-22\right)
Factor out y in the first and -1 in the second group.
\left(y-22\right)\left(y-1\right)
Factor out common term y-22 by using distributive property.
y=22 y=1
To find equation solutions, solve y-22=0 and y-1=0.
\sqrt{3\times 22-2}+\sqrt{22+3}-3=0
Substitute 22 for y in the equation \sqrt{3y-2}+\sqrt{y+3}-3=0.
10=0
Simplify. The value y=22 does not satisfy the equation.
\sqrt{3\times 1-2}+\sqrt{1+3}-3=0
Substitute 1 for y in the equation \sqrt{3y-2}+\sqrt{y+3}-3=0.
0=0
Simplify. The value y=1 satisfies the equation.
y=1
Equation \sqrt{3y-2}=-\sqrt{y+3}+3 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}