Solve for x
x = \frac{961}{12} = 80\frac{1}{12} \approx 80.083333333
Graph
Share
Copied to clipboard
\sqrt{3x}=9-\left(-8+\sqrt{3x}-14\right)
Subtract -8+\sqrt{3x}-14 from both sides of the equation.
\sqrt{3x}=9-\left(-22+\sqrt{3x}\right)
Subtract 14 from -8 to get -22.
\sqrt{3x}=9-\left(-22\right)-\sqrt{3x}
To find the opposite of -22+\sqrt{3x}, find the opposite of each term.
\sqrt{3x}=9+22-\sqrt{3x}
The opposite of -22 is 22.
\sqrt{3x}=31-\sqrt{3x}
Add 9 and 22 to get 31.
\left(\sqrt{3x}\right)^{2}=\left(31-\sqrt{3x}\right)^{2}
Square both sides of the equation.
3x=\left(31-\sqrt{3x}\right)^{2}
Calculate \sqrt{3x} to the power of 2 and get 3x.
3x=961-62\sqrt{3x}+\left(\sqrt{3x}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(31-\sqrt{3x}\right)^{2}.
3x=961-62\sqrt{3x}+3x
Calculate \sqrt{3x} to the power of 2 and get 3x.
3x+62\sqrt{3x}=961+3x
Add 62\sqrt{3x} to both sides.
3x+62\sqrt{3x}-3x=961
Subtract 3x from both sides.
62\sqrt{3x}=961
Combine 3x and -3x to get 0.
\sqrt{3x}=\frac{961}{62}
Divide both sides by 62.
\sqrt{3x}=\frac{31}{2}
Reduce the fraction \frac{961}{62} to lowest terms by extracting and canceling out 31.
3x=\frac{961}{4}
Square both sides of the equation.
\frac{3x}{3}=\frac{\frac{961}{4}}{3}
Divide both sides by 3.
x=\frac{\frac{961}{4}}{3}
Dividing by 3 undoes the multiplication by 3.
x=\frac{961}{12}
Divide \frac{961}{4} by 3.
\sqrt{3\times \frac{961}{12}}-8+\sqrt{3\times \frac{961}{12}}-14=9
Substitute \frac{961}{12} for x in the equation \sqrt{3x}-8+\sqrt{3x}-14=9.
9=9
Simplify. The value x=\frac{961}{12} satisfies the equation.
x=\frac{961}{12}
Equation \sqrt{3x}=-\sqrt{3x}+31 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}