Solve for x
x = \frac{3 {(\sqrt{65} + 33)}}{2} \approx 61.593386622
Graph
Share
Copied to clipboard
\sqrt{3x}=x+4-52
Subtract 52 from both sides of the equation.
\sqrt{3x}=x-48
Subtract 52 from 4 to get -48.
\left(\sqrt{3x}\right)^{2}=\left(x-48\right)^{2}
Square both sides of the equation.
3x=\left(x-48\right)^{2}
Calculate \sqrt{3x} to the power of 2 and get 3x.
3x=x^{2}-96x+2304
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-48\right)^{2}.
3x-x^{2}=-96x+2304
Subtract x^{2} from both sides.
3x-x^{2}+96x=2304
Add 96x to both sides.
99x-x^{2}=2304
Combine 3x and 96x to get 99x.
99x-x^{2}-2304=0
Subtract 2304 from both sides.
-x^{2}+99x-2304=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-99±\sqrt{99^{2}-4\left(-1\right)\left(-2304\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 99 for b, and -2304 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-99±\sqrt{9801-4\left(-1\right)\left(-2304\right)}}{2\left(-1\right)}
Square 99.
x=\frac{-99±\sqrt{9801+4\left(-2304\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-99±\sqrt{9801-9216}}{2\left(-1\right)}
Multiply 4 times -2304.
x=\frac{-99±\sqrt{585}}{2\left(-1\right)}
Add 9801 to -9216.
x=\frac{-99±3\sqrt{65}}{2\left(-1\right)}
Take the square root of 585.
x=\frac{-99±3\sqrt{65}}{-2}
Multiply 2 times -1.
x=\frac{3\sqrt{65}-99}{-2}
Now solve the equation x=\frac{-99±3\sqrt{65}}{-2} when ± is plus. Add -99 to 3\sqrt{65}.
x=\frac{99-3\sqrt{65}}{2}
Divide -99+3\sqrt{65} by -2.
x=\frac{-3\sqrt{65}-99}{-2}
Now solve the equation x=\frac{-99±3\sqrt{65}}{-2} when ± is minus. Subtract 3\sqrt{65} from -99.
x=\frac{3\sqrt{65}+99}{2}
Divide -99-3\sqrt{65} by -2.
x=\frac{99-3\sqrt{65}}{2} x=\frac{3\sqrt{65}+99}{2}
The equation is now solved.
\sqrt{3\times \frac{99-3\sqrt{65}}{2}}+52=\frac{99-3\sqrt{65}}{2}+4
Substitute \frac{99-3\sqrt{65}}{2} for x in the equation \sqrt{3x}+52=x+4.
\frac{101}{2}+\frac{3}{2}\times 65^{\frac{1}{2}}=\frac{107}{2}-\frac{3}{2}\times 65^{\frac{1}{2}}
Simplify. The value x=\frac{99-3\sqrt{65}}{2} does not satisfy the equation.
\sqrt{3\times \frac{3\sqrt{65}+99}{2}}+52=\frac{3\sqrt{65}+99}{2}+4
Substitute \frac{3\sqrt{65}+99}{2} for x in the equation \sqrt{3x}+52=x+4.
\frac{107}{2}+\frac{3}{2}\times 65^{\frac{1}{2}}=\frac{3}{2}\times 65^{\frac{1}{2}}+\frac{107}{2}
Simplify. The value x=\frac{3\sqrt{65}+99}{2} satisfies the equation.
x=\frac{3\sqrt{65}+99}{2}
Equation \sqrt{3x}=x-48 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}