Solve for x
x=3
x = \frac{27}{25} = 1\frac{2}{25} = 1.08
Graph
Share
Copied to clipboard
\left(\sqrt{3x}+4\right)^{2}=\left(\sqrt{8x+25}\right)^{2}
Square both sides of the equation.
\left(\sqrt{3x}\right)^{2}+8\sqrt{3x}+16=\left(\sqrt{8x+25}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{3x}+4\right)^{2}.
3x+8\sqrt{3x}+16=\left(\sqrt{8x+25}\right)^{2}
Calculate \sqrt{3x} to the power of 2 and get 3x.
3x+8\sqrt{3x}+16=8x+25
Calculate \sqrt{8x+25} to the power of 2 and get 8x+25.
8\sqrt{3x}=8x+25-\left(3x+16\right)
Subtract 3x+16 from both sides of the equation.
8\sqrt{3x}=8x+25-3x-16
To find the opposite of 3x+16, find the opposite of each term.
8\sqrt{3x}=5x+25-16
Combine 8x and -3x to get 5x.
8\sqrt{3x}=5x+9
Subtract 16 from 25 to get 9.
\left(8\sqrt{3x}\right)^{2}=\left(5x+9\right)^{2}
Square both sides of the equation.
8^{2}\left(\sqrt{3x}\right)^{2}=\left(5x+9\right)^{2}
Expand \left(8\sqrt{3x}\right)^{2}.
64\left(\sqrt{3x}\right)^{2}=\left(5x+9\right)^{2}
Calculate 8 to the power of 2 and get 64.
64\times 3x=\left(5x+9\right)^{2}
Calculate \sqrt{3x} to the power of 2 and get 3x.
192x=\left(5x+9\right)^{2}
Multiply 64 and 3 to get 192.
192x=25x^{2}+90x+81
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(5x+9\right)^{2}.
192x-25x^{2}=90x+81
Subtract 25x^{2} from both sides.
192x-25x^{2}-90x=81
Subtract 90x from both sides.
102x-25x^{2}=81
Combine 192x and -90x to get 102x.
102x-25x^{2}-81=0
Subtract 81 from both sides.
-25x^{2}+102x-81=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-102±\sqrt{102^{2}-4\left(-25\right)\left(-81\right)}}{2\left(-25\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -25 for a, 102 for b, and -81 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-102±\sqrt{10404-4\left(-25\right)\left(-81\right)}}{2\left(-25\right)}
Square 102.
x=\frac{-102±\sqrt{10404+100\left(-81\right)}}{2\left(-25\right)}
Multiply -4 times -25.
x=\frac{-102±\sqrt{10404-8100}}{2\left(-25\right)}
Multiply 100 times -81.
x=\frac{-102±\sqrt{2304}}{2\left(-25\right)}
Add 10404 to -8100.
x=\frac{-102±48}{2\left(-25\right)}
Take the square root of 2304.
x=\frac{-102±48}{-50}
Multiply 2 times -25.
x=-\frac{54}{-50}
Now solve the equation x=\frac{-102±48}{-50} when ± is plus. Add -102 to 48.
x=\frac{27}{25}
Reduce the fraction \frac{-54}{-50} to lowest terms by extracting and canceling out 2.
x=-\frac{150}{-50}
Now solve the equation x=\frac{-102±48}{-50} when ± is minus. Subtract 48 from -102.
x=3
Divide -150 by -50.
x=\frac{27}{25} x=3
The equation is now solved.
\sqrt{3\times \frac{27}{25}}+4=\sqrt{8\times \frac{27}{25}+25}
Substitute \frac{27}{25} for x in the equation \sqrt{3x}+4=\sqrt{8x+25}.
\frac{29}{5}=\frac{29}{5}
Simplify. The value x=\frac{27}{25} satisfies the equation.
\sqrt{3\times 3}+4=\sqrt{8\times 3+25}
Substitute 3 for x in the equation \sqrt{3x}+4=\sqrt{8x+25}.
7=7
Simplify. The value x=3 satisfies the equation.
x=\frac{27}{25} x=3
List all solutions of \sqrt{3x}+4=\sqrt{8x+25}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}