Solve for x
x=-2
x=0
Graph
Share
Copied to clipboard
\left(\sqrt{3x^{2}-6x+25}\right)^{2}=\left(5-x\right)^{2}
Square both sides of the equation.
3x^{2}-6x+25=\left(5-x\right)^{2}
Calculate \sqrt{3x^{2}-6x+25} to the power of 2 and get 3x^{2}-6x+25.
3x^{2}-6x+25=25-10x+x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-x\right)^{2}.
3x^{2}-6x+25-25=-10x+x^{2}
Subtract 25 from both sides.
3x^{2}-6x=-10x+x^{2}
Subtract 25 from 25 to get 0.
3x^{2}-6x+10x=x^{2}
Add 10x to both sides.
3x^{2}+4x=x^{2}
Combine -6x and 10x to get 4x.
3x^{2}+4x-x^{2}=0
Subtract x^{2} from both sides.
2x^{2}+4x=0
Combine 3x^{2} and -x^{2} to get 2x^{2}.
x\left(2x+4\right)=0
Factor out x.
x=0 x=-2
To find equation solutions, solve x=0 and 2x+4=0.
\sqrt{3\times 0^{2}-6\times 0+25}=5-0
Substitute 0 for x in the equation \sqrt{3x^{2}-6x+25}=5-x.
5=5
Simplify. The value x=0 satisfies the equation.
\sqrt{3\left(-2\right)^{2}-6\left(-2\right)+25}=5-\left(-2\right)
Substitute -2 for x in the equation \sqrt{3x^{2}-6x+25}=5-x.
7=7
Simplify. The value x=-2 satisfies the equation.
x=0 x=-2
List all solutions of \sqrt{3x^{2}-6x+25}=5-x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}