Solve for x
x=\frac{\sqrt{401}-21}{2}\approx -0.487507803
Graph
Share
Copied to clipboard
\left(\sqrt{3x^{2}-5x+6}\right)^{2}=\left(2\left(x+2\right)\right)^{2}
Square both sides of the equation.
3x^{2}-5x+6=\left(2\left(x+2\right)\right)^{2}
Calculate \sqrt{3x^{2}-5x+6} to the power of 2 and get 3x^{2}-5x+6.
3x^{2}-5x+6=\left(2x+4\right)^{2}
Use the distributive property to multiply 2 by x+2.
3x^{2}-5x+6=4x^{2}+16x+16
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+4\right)^{2}.
3x^{2}-5x+6-4x^{2}=16x+16
Subtract 4x^{2} from both sides.
-x^{2}-5x+6=16x+16
Combine 3x^{2} and -4x^{2} to get -x^{2}.
-x^{2}-5x+6-16x=16
Subtract 16x from both sides.
-x^{2}-21x+6=16
Combine -5x and -16x to get -21x.
-x^{2}-21x+6-16=0
Subtract 16 from both sides.
-x^{2}-21x-10=0
Subtract 16 from 6 to get -10.
x=\frac{-\left(-21\right)±\sqrt{\left(-21\right)^{2}-4\left(-1\right)\left(-10\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -21 for b, and -10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-21\right)±\sqrt{441-4\left(-1\right)\left(-10\right)}}{2\left(-1\right)}
Square -21.
x=\frac{-\left(-21\right)±\sqrt{441+4\left(-10\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-21\right)±\sqrt{441-40}}{2\left(-1\right)}
Multiply 4 times -10.
x=\frac{-\left(-21\right)±\sqrt{401}}{2\left(-1\right)}
Add 441 to -40.
x=\frac{21±\sqrt{401}}{2\left(-1\right)}
The opposite of -21 is 21.
x=\frac{21±\sqrt{401}}{-2}
Multiply 2 times -1.
x=\frac{\sqrt{401}+21}{-2}
Now solve the equation x=\frac{21±\sqrt{401}}{-2} when ± is plus. Add 21 to \sqrt{401}.
x=\frac{-\sqrt{401}-21}{2}
Divide 21+\sqrt{401} by -2.
x=\frac{21-\sqrt{401}}{-2}
Now solve the equation x=\frac{21±\sqrt{401}}{-2} when ± is minus. Subtract \sqrt{401} from 21.
x=\frac{\sqrt{401}-21}{2}
Divide 21-\sqrt{401} by -2.
x=\frac{-\sqrt{401}-21}{2} x=\frac{\sqrt{401}-21}{2}
The equation is now solved.
\sqrt{3\times \left(\frac{-\sqrt{401}-21}{2}\right)^{2}-5\times \frac{-\sqrt{401}-21}{2}+6}=2\left(\frac{-\sqrt{401}-21}{2}+2\right)
Substitute \frac{-\sqrt{401}-21}{2} for x in the equation \sqrt{3x^{2}-5x+6}=2\left(x+2\right).
401^{\frac{1}{2}}+17=-401^{\frac{1}{2}}-17
Simplify. The value x=\frac{-\sqrt{401}-21}{2} does not satisfy the equation because the left and the right hand side have opposite signs.
\sqrt{3\times \left(\frac{\sqrt{401}-21}{2}\right)^{2}-5\times \frac{\sqrt{401}-21}{2}+6}=2\left(\frac{\sqrt{401}-21}{2}+2\right)
Substitute \frac{\sqrt{401}-21}{2} for x in the equation \sqrt{3x^{2}-5x+6}=2\left(x+2\right).
401^{\frac{1}{2}}-17=401^{\frac{1}{2}}-17
Simplify. The value x=\frac{\sqrt{401}-21}{2} satisfies the equation.
x=\frac{\sqrt{401}-21}{2}
Equation \sqrt{3x^{2}-5x+6}=2\left(x+2\right) has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}