Solve for x
x=\sqrt{5}-2\approx 0.236067977
Graph
Share
Copied to clipboard
\left(\sqrt{3x^{2}+2}\right)^{2}=\left(2x+1\right)^{2}
Square both sides of the equation.
3x^{2}+2=\left(2x+1\right)^{2}
Calculate \sqrt{3x^{2}+2} to the power of 2 and get 3x^{2}+2.
3x^{2}+2=4x^{2}+4x+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
3x^{2}+2-4x^{2}=4x+1
Subtract 4x^{2} from both sides.
-x^{2}+2=4x+1
Combine 3x^{2} and -4x^{2} to get -x^{2}.
-x^{2}+2-4x=1
Subtract 4x from both sides.
-x^{2}+2-4x-1=0
Subtract 1 from both sides.
-x^{2}+1-4x=0
Subtract 1 from 2 to get 1.
-x^{2}-4x+1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-1\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -4 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-1\right)}}{2\left(-1\right)}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16+4}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-4\right)±\sqrt{20}}{2\left(-1\right)}
Add 16 to 4.
x=\frac{-\left(-4\right)±2\sqrt{5}}{2\left(-1\right)}
Take the square root of 20.
x=\frac{4±2\sqrt{5}}{2\left(-1\right)}
The opposite of -4 is 4.
x=\frac{4±2\sqrt{5}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{5}+4}{-2}
Now solve the equation x=\frac{4±2\sqrt{5}}{-2} when ± is plus. Add 4 to 2\sqrt{5}.
x=-\left(\sqrt{5}+2\right)
Divide 4+2\sqrt{5} by -2.
x=\frac{4-2\sqrt{5}}{-2}
Now solve the equation x=\frac{4±2\sqrt{5}}{-2} when ± is minus. Subtract 2\sqrt{5} from 4.
x=\sqrt{5}-2
Divide 4-2\sqrt{5} by -2.
x=-\left(\sqrt{5}+2\right) x=\sqrt{5}-2
The equation is now solved.
\sqrt{3\left(-\left(\sqrt{5}+2\right)\right)^{2}+2}=2\left(-\left(\sqrt{5}+2\right)\right)+1
Substitute -\left(\sqrt{5}+2\right) for x in the equation \sqrt{3x^{2}+2}=2x+1.
2\times 5^{\frac{1}{2}}+3=-2\times 5^{\frac{1}{2}}-3
Simplify. The value x=-\left(\sqrt{5}+2\right) does not satisfy the equation because the left and the right hand side have opposite signs.
\sqrt{3\left(\sqrt{5}-2\right)^{2}+2}=2\left(\sqrt{5}-2\right)+1
Substitute \sqrt{5}-2 for x in the equation \sqrt{3x^{2}+2}=2x+1.
2\times 5^{\frac{1}{2}}-3=2\times 5^{\frac{1}{2}}-3
Simplify. The value x=\sqrt{5}-2 satisfies the equation.
x=\sqrt{5}-2
Equation \sqrt{3x^{2}+2}=2x+1 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}