Solve for x
x=5
x=0
Graph
Share
Copied to clipboard
\left(\sqrt{3x+1}+\sqrt{5x}\right)^{2}=\left(\sqrt{16x+1}\right)^{2}
Square both sides of the equation.
\left(\sqrt{3x+1}\right)^{2}+2\sqrt{3x+1}\sqrt{5x}+\left(\sqrt{5x}\right)^{2}=\left(\sqrt{16x+1}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{3x+1}+\sqrt{5x}\right)^{2}.
3x+1+2\sqrt{3x+1}\sqrt{5x}+\left(\sqrt{5x}\right)^{2}=\left(\sqrt{16x+1}\right)^{2}
Calculate \sqrt{3x+1} to the power of 2 and get 3x+1.
3x+1+2\sqrt{3x+1}\sqrt{5x}+5x=\left(\sqrt{16x+1}\right)^{2}
Calculate \sqrt{5x} to the power of 2 and get 5x.
8x+1+2\sqrt{3x+1}\sqrt{5x}=\left(\sqrt{16x+1}\right)^{2}
Combine 3x and 5x to get 8x.
8x+1+2\sqrt{3x+1}\sqrt{5x}=16x+1
Calculate \sqrt{16x+1} to the power of 2 and get 16x+1.
2\sqrt{3x+1}\sqrt{5x}=16x+1-\left(8x+1\right)
Subtract 8x+1 from both sides of the equation.
2\sqrt{3x+1}\sqrt{5x}=16x+1-8x-1
To find the opposite of 8x+1, find the opposite of each term.
2\sqrt{3x+1}\sqrt{5x}=8x+1-1
Combine 16x and -8x to get 8x.
2\sqrt{3x+1}\sqrt{5x}=8x
Subtract 1 from 1 to get 0.
\left(2\sqrt{3x+1}\sqrt{5x}\right)^{2}=\left(8x\right)^{2}
Square both sides of the equation.
2^{2}\left(\sqrt{3x+1}\right)^{2}\left(\sqrt{5x}\right)^{2}=\left(8x\right)^{2}
Expand \left(2\sqrt{3x+1}\sqrt{5x}\right)^{2}.
4\left(\sqrt{3x+1}\right)^{2}\left(\sqrt{5x}\right)^{2}=\left(8x\right)^{2}
Calculate 2 to the power of 2 and get 4.
4\left(3x+1\right)\left(\sqrt{5x}\right)^{2}=\left(8x\right)^{2}
Calculate \sqrt{3x+1} to the power of 2 and get 3x+1.
4\left(3x+1\right)\times 5x=\left(8x\right)^{2}
Calculate \sqrt{5x} to the power of 2 and get 5x.
20\left(3x+1\right)x=\left(8x\right)^{2}
Multiply 4 and 5 to get 20.
\left(60x+20\right)x=\left(8x\right)^{2}
Use the distributive property to multiply 20 by 3x+1.
60x^{2}+20x=\left(8x\right)^{2}
Use the distributive property to multiply 60x+20 by x.
60x^{2}+20x=8^{2}x^{2}
Expand \left(8x\right)^{2}.
60x^{2}+20x=64x^{2}
Calculate 8 to the power of 2 and get 64.
60x^{2}+20x-64x^{2}=0
Subtract 64x^{2} from both sides.
-4x^{2}+20x=0
Combine 60x^{2} and -64x^{2} to get -4x^{2}.
x\left(-4x+20\right)=0
Factor out x.
x=0 x=5
To find equation solutions, solve x=0 and -4x+20=0.
\sqrt{3\times 0+1}+\sqrt{5\times 0}=\sqrt{16\times 0+1}
Substitute 0 for x in the equation \sqrt{3x+1}+\sqrt{5x}=\sqrt{16x+1}.
1=1
Simplify. The value x=0 satisfies the equation.
\sqrt{3\times 5+1}+\sqrt{5\times 5}=\sqrt{16\times 5+1}
Substitute 5 for x in the equation \sqrt{3x+1}+\sqrt{5x}=\sqrt{16x+1}.
9=9
Simplify. The value x=5 satisfies the equation.
x=0 x=5
List all solutions of \sqrt{3x+1}+\sqrt{5x}=\sqrt{16x+1}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}