Solve for x
x=1
Graph
Share
Copied to clipboard
\sqrt{3x+1}=-\left(\sqrt{4x-3}-\sqrt{5x+4}\right)
Subtract \sqrt{4x-3}-\sqrt{5x+4} from both sides of the equation.
\sqrt{3x+1}=-\sqrt{4x-3}-\left(-\sqrt{5x+4}\right)
To find the opposite of \sqrt{4x-3}-\sqrt{5x+4}, find the opposite of each term.
\sqrt{3x+1}=-\sqrt{4x-3}+\sqrt{5x+4}
The opposite of -\sqrt{5x+4} is \sqrt{5x+4}.
\left(\sqrt{3x+1}\right)^{2}=\left(-\sqrt{4x-3}+\sqrt{5x+4}\right)^{2}
Square both sides of the equation.
3x+1=\left(-\sqrt{4x-3}+\sqrt{5x+4}\right)^{2}
Calculate \sqrt{3x+1} to the power of 2 and get 3x+1.
3x+1=\left(\sqrt{4x-3}\right)^{2}-2\sqrt{4x-3}\sqrt{5x+4}+\left(\sqrt{5x+4}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-\sqrt{4x-3}+\sqrt{5x+4}\right)^{2}.
3x+1=4x-3-2\sqrt{4x-3}\sqrt{5x+4}+\left(\sqrt{5x+4}\right)^{2}
Calculate \sqrt{4x-3} to the power of 2 and get 4x-3.
3x+1=4x-3-2\sqrt{4x-3}\sqrt{5x+4}+5x+4
Calculate \sqrt{5x+4} to the power of 2 and get 5x+4.
3x+1=9x-3-2\sqrt{4x-3}\sqrt{5x+4}+4
Combine 4x and 5x to get 9x.
3x+1=9x+1-2\sqrt{4x-3}\sqrt{5x+4}
Add -3 and 4 to get 1.
3x+1-\left(9x+1\right)=-2\sqrt{4x-3}\sqrt{5x+4}
Subtract 9x+1 from both sides of the equation.
3x+1-9x-1=-2\sqrt{4x-3}\sqrt{5x+4}
To find the opposite of 9x+1, find the opposite of each term.
-6x+1-1=-2\sqrt{4x-3}\sqrt{5x+4}
Combine 3x and -9x to get -6x.
-6x=-2\sqrt{4x-3}\sqrt{5x+4}
Subtract 1 from 1 to get 0.
\left(-6x\right)^{2}=\left(-2\sqrt{4x-3}\sqrt{5x+4}\right)^{2}
Square both sides of the equation.
\left(-6\right)^{2}x^{2}=\left(-2\sqrt{4x-3}\sqrt{5x+4}\right)^{2}
Expand \left(-6x\right)^{2}.
36x^{2}=\left(-2\sqrt{4x-3}\sqrt{5x+4}\right)^{2}
Calculate -6 to the power of 2 and get 36.
36x^{2}=\left(-2\right)^{2}\left(\sqrt{4x-3}\right)^{2}\left(\sqrt{5x+4}\right)^{2}
Expand \left(-2\sqrt{4x-3}\sqrt{5x+4}\right)^{2}.
36x^{2}=4\left(\sqrt{4x-3}\right)^{2}\left(\sqrt{5x+4}\right)^{2}
Calculate -2 to the power of 2 and get 4.
36x^{2}=4\left(4x-3\right)\left(\sqrt{5x+4}\right)^{2}
Calculate \sqrt{4x-3} to the power of 2 and get 4x-3.
36x^{2}=4\left(4x-3\right)\left(5x+4\right)
Calculate \sqrt{5x+4} to the power of 2 and get 5x+4.
36x^{2}=\left(16x-12\right)\left(5x+4\right)
Use the distributive property to multiply 4 by 4x-3.
36x^{2}=80x^{2}+64x-60x-48
Apply the distributive property by multiplying each term of 16x-12 by each term of 5x+4.
36x^{2}=80x^{2}+4x-48
Combine 64x and -60x to get 4x.
36x^{2}-80x^{2}=4x-48
Subtract 80x^{2} from both sides.
-44x^{2}=4x-48
Combine 36x^{2} and -80x^{2} to get -44x^{2}.
-44x^{2}-4x=-48
Subtract 4x from both sides.
-44x^{2}-4x+48=0
Add 48 to both sides.
-11x^{2}-x+12=0
Divide both sides by 4.
a+b=-1 ab=-11\times 12=-132
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -11x^{2}+ax+bx+12. To find a and b, set up a system to be solved.
1,-132 2,-66 3,-44 4,-33 6,-22 11,-12
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -132.
1-132=-131 2-66=-64 3-44=-41 4-33=-29 6-22=-16 11-12=-1
Calculate the sum for each pair.
a=11 b=-12
The solution is the pair that gives sum -1.
\left(-11x^{2}+11x\right)+\left(-12x+12\right)
Rewrite -11x^{2}-x+12 as \left(-11x^{2}+11x\right)+\left(-12x+12\right).
11x\left(-x+1\right)+12\left(-x+1\right)
Factor out 11x in the first and 12 in the second group.
\left(-x+1\right)\left(11x+12\right)
Factor out common term -x+1 by using distributive property.
x=1 x=-\frac{12}{11}
To find equation solutions, solve -x+1=0 and 11x+12=0.
\sqrt{3\left(-\frac{12}{11}\right)+1}+\sqrt{4\left(-\frac{12}{11}\right)-3}-\sqrt{5\left(-\frac{12}{11}\right)+4}=0
Substitute -\frac{12}{11} for x in the equation \sqrt{3x+1}+\sqrt{4x-3}-\sqrt{5x+4}=0. The expression \sqrt{3\left(-\frac{12}{11}\right)+1} is undefined because the radicand cannot be negative.
\sqrt{3\times 1+1}+\sqrt{4\times 1-3}-\sqrt{5\times 1+4}=0
Substitute 1 for x in the equation \sqrt{3x+1}+\sqrt{4x-3}-\sqrt{5x+4}=0.
0=0
Simplify. The value x=1 satisfies the equation.
x=1
Equation \sqrt{3x+1}=\sqrt{5x+4}-\sqrt{4x-3} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}